透過您的圖書館登入
IP:18.118.140.88
  • 學位論文

即時細部吊裝作業規劃系統

Real-time Micro Planner for Crane Operations

指導教授 : 康仕仲

摘要


吊裝活動的進行在營建工程中佔有很重要的地位,其成效往往能夠有效地影響整個工程專案的進行、安全性以及整體成本花費。本研究針對吊裝活動開發了一電腦系統,希望能有效的輔助在微工程規劃階段時,吊裝作業計畫的規劃與決策。微工程規劃是在工程進行時,因應當時工程進度、以及各種即時發生的狀況與變化所規劃出的計畫。為了能夠快速地針對工地的變動做出正確且有效的計畫修改與回應,需要一個能夠支援快速建立與開發細節吊裝作業模擬的工具,以幫助工程師找出可行且安全的吊裝計畫。 而發展一個能夠有效輔助微工程規劃的吊裝作業規劃輔助系仍有許多挑戰需要克服,其中包含了如何在短時間內建立虛擬吊裝作業模擬的吊車模型;以及將複雜三維工地模型轉換為碰撞偵測所需的模型;另外還有在短時間內建立吊裝路徑規劃所需資訊的方法;最後還有能讓工程師清楚且快速地掌握吊裝環境中物體間空間關係的視覺化方法以及介面。 針對這些挑戰,本研究利用物理引擎發展了一個吊裝作業輔助系統,能夠在虛擬環境中進行即時地吊裝作業模擬,系統並能自動且快速地規劃出可行的吊裝路徑,以幫助吊裝計畫規劃與決策,本吊裝輔助系統由四個主要的元件所構成,分別是:(一)可組裝之吊車模型(二)自動的碰撞邊界產生器(三)吊裝路徑規劃器以及(四)空間關係加強的人機介面。可組裝之吊車模型運用多物體運動學將吊車模型模組化成三個主要部分,所建立的模型因此可根據吊裝作業所需重複利用以及組裝成可進行即時模擬的模型;自動的碰撞邊界產生器運用本研究所發展的疊代式分類方法,依據構建的位置與尺寸大小將複雜的三維工地模型轉化成可支援即時碰撞偵測的碰撞邊界;吊裝路徑規劃器運用本研究發展的四項策略加速了組態空間建置時間,能夠根據所建立的模擬環境在短時間內找出可行無碰撞發生的吊裝路徑;而使用者能夠過空間關係加強的人機介面,增加在吊裝作業進行時,對於環境中物體間空間關係的理解能力。 透過本研究所開發的輔助系統,工程師可以在微工程規劃階段,根據工地現狀快速地建立吊裝作業模型以供即時的吊裝作業模擬進行,透過模擬以及結合所發展的人機介面找出潛在與可能發生的問題與衝突;系統並能在短時間內建立自動吊裝路徑規劃所需的資訊,規劃出有效且可行的吊裝路徑供決策者參考。建立的吊裝作業模擬也可用於檢測與驗證已規劃的吊裝計畫,吊車手並能夠透過模擬於事前先行演練較困難且危險的吊裝活動,減少意外的發生與損失。

並列摘要


The crane erection activities are the critical part in construction, which can significantly impact the cost and safety of the entire construction project. This research developed a real-time micro planner for cranes operations, which can assist crane erection planning in micro planning for construction. A micro plan for construction is the plan that engineers make for dealing with dynamical and unexpected situations happened during the construction. These plans must be accurately complete in a reasonable time to minimize the risk of time delay and additional cost of entire project. However, the lack of a comprehensible and reliable tool to plan erection activities is a critical problem in current micro planning method. Engineers usually have to spent tremendous time and efforts to collect and analyze the required information and models for detailed erection simulation and feasible path finding. Therefore, these erection plans are usually generated by using the experiences of engineers and crane crew. They may sometimes result in inefficient or even risky plan. This research suggests adding level of details to solve the above-mentioned problem. The author developed methods for detailed erection simulation and automatic erection path finding to facilitate micro planning. The methods can be categorized into four parts: (1) the configurable crane modeling; (2) the automatic collision boundaries generator; (3) the erection path planner; (4) and the space-emphasized human-machine interface. The configurable crane modeling method utilizes multibody dynamics to modularized cranes into three modules, which can be reused and efficiently reassembled to versatile types of cranes for real-time simulations; the collision boundaries generator converts a site model into appropriate collision boundaries by a iteratively clustering method developed based on K-means clustering method according to the objects’ dimension and position in the construction site; the erection path planner improves the C-space construction by the four strategies proposed in this research by majorly considering the lifting capacities of cranes and collision detection strategies. It can allow engineers to perform erection path planning efficiently; the space-emphasized human-machine interface integrated stereoscopic vision and kinesthetic vision to provide an intuitive and realistic viewing experiences for engineers and crane operators. This research developed and implemented the proposed methods as a computer system. The author conducted experiments in order to validate the feasibility of the methods. The experiment results indicate that these methods can allow engineers to prepare and setup detailed crane simulation and real-time erection path planning within minutes. With the methods, engineers are able to establish required simulation environment and information for reliable and detailed erection planning in micro planning stage. It can help find potential problems and re-generate alternate erection plans during or before crane erection task starts. It can be also used to check the existing erection plan and crane operators are able to utilize the simulation to rehearsal the erection task before it starts. The developed visualization methods also improve the comprehensibility of spatial relationship and information of erection environment.

參考文獻


Abdelhamid, T. S., El-Gafy, M., and Salem, O. (2008). “Lean Construction: Fundamentals And Principles.” American Professional Constructor Journal.
Achour, N. and Chaalal, M. (2011). “Mobile Robot Path Planning using Genetic Algorithms,” ICAS 2011 : The Seventh International Conference on Autonomic and Autonomous Systems.
Al-Hussein, M., Alkass, S., and Moselhi, O.. (2001). “An Algorithm for Mobile Crane Selection and Location on Construction Sites.” Construction Innovation Journal, UK, 1, 91-105.
AlBahnassi, H. and Hammad, A. (2012). ”Near Real-Time Motion Planning and Simulation of Cranes in Construction: Framework and System Architecture.” Journal of Computing in Civil Engineering, 26(1), 54–63.
Alejandro P., Rober, P., George, K., Leslie, K., and Tomas, P. (2012). “LQR-RRT: Optimal Sampling-Based Motion Planning with Automatically Derived Extension Heuristics,” 2012 IEEE International Conference on Robotics and Automation (ICRA).

延伸閱讀