透過您的圖書館登入
IP:18.118.227.69
  • 學位論文

利用氣相多功能高分子鍍膜於生物分子工程及材料生物界面現象之操控

Vapor-Phased Multifunctional Polymer Coatings for Biomolecular and Biointerface Engineering

指導教授 : 陳賢燁

摘要


隨著生醫材料領域的發展,表面修飾技術不僅滿足於被動固定生物分子而沒有任何控制能力。從材料科學角度來看,控制生物界面分子修飾可利用許多物理或化學機制來實現。在本論文中,我們將基於不同功能性聚對二甲苯高分子化學氣相沉積鍍膜提出四種機制來控制表面修飾的生物分子進而達到材料生物界面之操控,包括:(一) 利用操控溶液相中的蛋白質混合物比例控制功能性蛋白質在表面的多重和競爭吸附。(二) 利用側鏈尾端反應性炔基進行雙反向點擊反應形成多功能連續反向生物分子梯度。(三) 利用帶有雙硫鍵官能基進行氧化還原硫醇-二硫化物交換反應置換表面功能性生物分子達到可切換與可編程生物界面。(四) 利用反應性末端基團和光化學斷鍵基團鄰硝基芐基達成可點擊反應和光化學分離的生物界面。藉由這四種可控制機制,精確的在時間和空間上操控了生物界面性質的表現如:表面親疏水性、細胞粘附、細胞增殖和幹細胞誘導分化等。 基於上述最先進的生物分子修飾技術,具操控性的仿生生物界面已經實現於聚對二甲苯高分子塗層上。

並列摘要


Surface modification does not satisfy with passively immobilizing biomolecules without any controllable ability. Controllable biomolecules modification on biointerface can be realized by several physical or chemical mechanisms. In this work presented herein, four types of controllable mechanisms were realized as followed: (i) Multiple and competing adsorption of functional proteins based on the composition of proteins mixture in the solution phase. (ii) Multifunctional and continuous gradients based on dual reverse click reactions. (iii) Switchable and programmable biointerface based on thiol-disulfide interchange reaction. (iv) Clickable and photo-cleavable biointerface based on ortho-nitrobenzyl photo-chemistry. This four strategies were proposed to control biomolecules modified on the surface based on different functionalized poly-para-xylylene coatings synthesized via chemical vapor deposition (CVD) polymerization. Based on the controllable biomolecules modification described above, the biointerface properties, including wettability, cell adhesion, proliferation, differentiation and etc., were manipulated over temporal and spatial dimensions, and the new advanced and biomimic biointerface has been available on poly‑p‑xylylene coatings.

參考文獻


1. Castner, D. G., Surface science: View from the edge. Nature 2003, 422, 129-130.
2. Roach, P.; Eglin, D.; Rohde, K.; Perry, C. C., Modern biomaterials: a review—bulk properties and implications of surface modifications. Journal of Materials Science: Materials in Medicine 2007, 18, 1263-1277.
3. Zheng, Y. F.; Gu, X. N.; Witte, F., Biodegradable metals. Materials Science and Engineering: R: Reports 2014, 77, 1-34.
4. Ifkovits, J. L.; Burdick, J. A., Review: Photopolymerizable and Degradable Biomaterials for Tissue Engineering Applications. Tissue Engineering 2007, 13, 2369-2385.
5. Kundu, B.; Rajkhowa, R.; Kundu, S. C.; Wang, X., Silk fibroin biomaterials for tissue regenerations. Advanced Drug Delivery Reviews 2013, 65, 457-470.

延伸閱讀