透過您的圖書館登入
IP:18.221.145.27
  • 學位論文

基於無磁滯與電荷輸入的機電模型之壓電平台識別及控制

Piezo-Stage Identification and Control Based on Non-Hysteretic Electromechanical Model with Charge Input

指導教授 : 顏家鈺

摘要


隨著積體電路的蓬勃發展,人們對於小尺度的電路有越來越高的需求,於是在微影技術上,也必須不斷突破,光學微影根據使用的波長會有繞射極限等尺度上的限制,而電子束的曝寫就無光學上的缺點,以直寫的方式,可望成為下一世代的微影系統方法。 在電子束直寫的情況下,利用電磁場控制曝寫位置可能會因為電子束偏離太大造成精準度上的誤差,於是本實驗採用固定電子束曝寫位置,相對移動壓電材料所控制的平台,來達到微影之精準效果。驅動部分使用積層型壓電致動器,其有許多優點,如低消耗功率、發熱少、不被電磁信號干擾、高精度定位控制、響應速度快、能量轉換效率高、體積重量輕,但卻由於壓電驅動上有明顯的磁滯現象,造成控制上的困難。 對於傳統的電壓驅動壓電材料的情況,磁滯的問題被廣泛的討論,並且造成系統識別上及控制上的困難。此篇論文討論,利用電荷及壓電伸長量的關係,我們考慮一個以電荷為輸入的壓電模型。由於磁滯效應實際上存在於電壓至電荷之間,而非電荷至伸長量之間,因此,此電荷輸入之模型可以避開磁滯效應,經由量測電荷及平台位移進行更精確的系統識別。而系統識別結合平台模型的拉格朗日分析推導,採用grey box之參數擬合。最後以最佳化LQG control達到系統實際的定位及響應結果。

並列摘要


The piezo-actuated stage positioning directly affects the resolution of E-beam lithography in nanometer scale. For improving the performance, the hysteresis effect of piezoelectric actuator should be eliminated in some way. For traditional voltage steering, the hysteresis is encountered between electrical input and elongation. It leads to the difficulty of system identification and control. In this thesis, by the linear relation of charge and elongation, an electromechanical model of piezo actuator based on charge input is considered. Since, in practice, hysteresis is encountered between voltage and charge but not between the charge and elongation. It is the advantage of charge steering. The overall piezo actuated stage model is completed under reasonable assumption with Lagrange equations. The grey-box identification is without the hysteresis effect by measuring the charge over piezo and stage displacements based on the dynamics model derived. It generates a more precise identified result. Finally, the system is controlled by LQG tracking design.

參考文獻


1. Moore, G.E., Cramming more components onto integrated circuits, Reprinted from Electronics, volume 38, number 8, April 19, 1965, pp.114 ff. Solid-State Circuits Society Newsletter, IEEE, 2006. 11(5): p. 33-35.
3. Goldfarb, M. and N. Celanovic, Modeling piezoelectric stack actuators for control of micromanipulation. Control Systems, IEEE, 1997. 17(3): p. 69-79.
4. Chang, S.H. and B.C. Du, A precision piezodriven micropositioner mechanism with large travel range. Review of Scientific Instruments, 1998. 69(4): p. 1785-1791.
5. Peng Gao, S.-M.S., and Zhejun Yuan, A New Piezodriven Precision Micropositioning Stage utilizing Flexure Hinges.
6. Tsai, K.-Y., Servo System Design of a High-Resolution Piezo-Driven Three Degree-of-Freedom Fine Stage for Integrated-Circuit Wafer Step-and-Repeat Lithography Systems, 1997, Natinal Taiwan University.

延伸閱讀