透過您的圖書館登入
IP:18.118.193.123
  • 學位論文

提升砷化銦鎵金氧半場效電晶體之金半介面與源/汲極歐姆接觸

Improving the Quality of Al2O3/In0.53Ga0.47As Interface and Source/Drain Ohmic contact in MOSFETs

指導教授 : 廖洺漢
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本篇論文著重在砷化銦鎵量子井金氧半場效電晶體的製作以及其電性效能的提升,特別著重在氧化層與半導體的介面及源/汲極的阻值。內容主要可分為兩大部分,第一部分為在氧化層與半導體的介面嵌入磷化銦成為潛通道元件;第二部分則是利用不同材料之合金來降低接觸電阻。隨著矽基元件逐漸面臨了其發展的瓶頸,三五族化合物半導體因此被視為是下一個世代N型電晶體通道的替代材料。其原因主要是因為三五族化合物擁有較高的電子遷移率以及較低的等效電子質量。然而不像矽基元件的成熟發展,欲使用三五族半導體作為電晶體仍有許多困難需要克服,其中兩項就是氧化層/半導體介面缺陷及源/汲極的接觸阻值。   首先我們製作了1微米閘極長度之砷化銦鎵量子井金氧半場效電晶體,此製程特點包含了非離子佈植的源/汲極、高源/汲極摻雜濃度、低製程熱預算,因此非常適合未來10奈米節點以下的製程。接著將磷化銦嵌入氧化層與通道層的界面,藉由此結構來使通道遠離氧化層/半導體介面,進而減少通道載子的散射使載子遷移率上升,另一方面也可降低氧化層/半導體的介面態密度,由電壓-電容量測中可以得到頻散(frequency dispersion)從原本的5.8%降低至5%,遲滯(hystersis)也從原本的300mV降低至160mV,這些都顯現出氧化層與半導體介面的改善。   而為了降低源/汲極的阻值,源/汲極的接觸電阻必須要再降低,故我們測試許多源汲極之接觸金屬。在此我們測試了單層金屬「鎳」和多層金屬-「鈀/鍺/鈦/金」、「鍺/鎳」等接觸金屬,利用傳輸線模型法畫出接觸電阻值與間距關係圖,由圖形中計算出特徵電阻值在不同溫度及退火時間之變化。經由多種比較後得到鈀鍺鈦金的接觸金屬在 400oC/60 秒退火條件下可以得到最低特徵電阻率(ρc) 4.6 10-7Ω-cm^2,這個結果有助於我們應用在金氧半場效電晶體上。   我們將磷化銦的嵌入以及超低特徵電阻值的結果實際應用在砷化銦鎵量子井金氧半場效電晶體的源/汲極上。由1微米閘極長度的元件電性可看出,隨著4奈IV米磷化銦的嵌入及源汲極接觸阻值得降低,達到元件飽和電流(Ion)提升至253 μA/μm、轉移電導提升至172μS/μm及次臨界擺幅下降至121mV/dec。   最後我們將此實驗結果與其他研究團隊的成果做比較,經比較可發現在相近 閘極長度的範圍內,我們元件有較好的效能。而我們也預期,隨著元件閘極長度 的縮減,元件的效能可以再更進一步的提升。

並列摘要


In this thesis, we focus on the investigation and demonstration of the indium gallium arsenide (In0.53Ga0.47As) quantum-well metal-oxide-semiconductor field-effect transistors (QW-MOSFETs); especially on the source/drain (S/D) and oxide/semiconductor interface regime. There are two main parts – an InP insertion layer between oxide and semiconductor interface to improve the channel mobility andsource/drain contact resistance. In the first part, we demonstrate the 1-μm-gate-length (Lg) implant-free In0.53Ga0.47As QW-MOSFETs without InP layer. Then we insert an InP layer between the oxide/semiconductor interface. An optimized structure was proposed obtained. The optimized structure can improve the interface quality and electrical characteristics. Source/drain resistance (RSD) becomes dominant which is mainly attributed to the size scaling and mobility enhancement. In order to further reduce the RSD, a ultra-low resistivity of Ohmic contact material is implemented to reduce contact resistance. We apply this technology on the 1-μm-Lg implant-free In0.53Ga0.47As QW-MOSFETs with optimized S/D. ID,sat and peak Gm is 0.253 mA/μm and 0.172 mS/μm, respectively. The S/D contact restivity is down to 4.6 10-7 Ω-cm2. This reduction is attributed to the Rc decreasing through the better Ohmic contact. In addition, off-state characteristics such as SS (121 mV/dec) is still kept at similar level.

參考文獻


[1] E. Pop, “Energy Dissipation and Transport in Nanoscale Devices,” Nano Res., 3, 147 (2010).
[2] T.-J. K. Liu, “Bulk CMOS Scaling to the End of the Roadmap,” in VLSI Symp. Tech. Dig., short course, 2 (2012).
[3] R. Chau, S. Datta, and A. Majumdar, “Opportunities and challenges of III-V nanoelectronics for future high-speed, low-power logic applications,” in Compound Semiconductor Integrated Circuit Symp., 17 (2005).
[4] M. J. Rodwell, U. Singisetti, M. Wistey, G. J. Burek, A. Carter, A. Baraskar, J. Law, B. J. Thibeault, E. J. Kim, B. Shin, Y.-J. Lee, S. Steiger, S. Lee, H. Ryu, Y. Tan, G. Hegde, L. Wang, E. Chagarov, A. C. Gossard, W. Frensley, A. Kummel, C. Palmstrom, P. C. McIntyre, T. Boykin, G. Klimek, and P. Asbeck, “III-V MOSFETs: Scaling laws, scaling limits, fabrication process,” in Proc. Int. Conf. IPRM, 25 (2010).
[5] J. A. del Alamo, “Nanometer-scale electronics with III–V compound semiconductors,” Nature, 479, 317 (2011).

延伸閱讀