透過您的圖書館登入
IP:3.142.196.223
  • 學位論文

毫米波60-GHz關鍵元件與190-GHz放大器之研製

Design and Analysis of Millimeter-Wave 60-GHz Key Components and 190-GHz Amplifier

指導教授 : 王暉

摘要


本論文包含兩部分,第一部分呈現在V頻段收發機中兩個關鍵元件。一個使用TSMC先進65奈米互補式金氧半場效電晶體製程之60 GHz頻段下的雙平衡吉爾伯特單元降頻混波器,達到約1 dB的轉換增益,這個混頻器使用了寬頻的馬遜式平衡與不平衡轉換器以及一個RC迴授中頻放大器使節省VDD的電壓頭部空間。另一個元件為60 GHz頻段下的低相位變化的可變增益放大器,同樣使用TSMC先進65奈米互補式金氧半場效電晶體製程。利用電流控制架構(Current-Steering)與分割式疊接電晶體(Splitting-Cascode)相反的相位趨勢來達到相位的補償,這個低相位變化的可變增益放大器在31 dB的增益可調範圍下相位變化小於 ,3-dB頻寬為50至70 GHz而最高的增益為21 dB。 第二部分呈現一個使用增益提高(Gain-Boosted)技術與疊接電晶體組態(Cascode)之190 GHz金氧互補式半導體單晶微波積體電路放大器,這個放大器利用增益提高(Gain-Boosted)技術將在190 GHz的最大穩定增益(Maximum Stable Gain, MSG)提高。這個放大器的晶片面積為0.73 × 0.63 mm2使用TSMC標準RF 65奈米互補式金氧半場效電晶體製程,3-dB頻寬為188至192 GHz而最高的增益為16.3 dB。

並列摘要


This thesis includes two parts. The first part presents two important components in V-band transceiver. A 57-66 GHz double-balanced Gilbert-cell down conversion mixer implemented in TSMC 65-nm CMOS process, achieving about 1 dB conversion gain. It utilizes the broadband marchand-type-balun with a RC feedback IF amplifier to save the headroom voltage of VDD. Another component is a 57-66 GHz low phase variation variable gain amplifier also in TSMC 65-nm CMOS process. The phase compensation is achieved by using the different trends of phase between current-steering and splitting-cascade topology. This variable gain amplifier has a phase variation lower than with 31 dB gain control range. The 3-dB bandwidth is from 50 to 70 GHz with peak gain of 21 dB. In the second part, a 190-GHz CMOS MMIC amplifier with cascode and gain-boosted techniques is presented. The amplifier utilizes gain-boosted technique to enhance the maximum stable gain (MSG) at 200 GHz. This amplifier is fabricated in standard RF 65-nm CMOS process with chip area of 0.73 × 0.63 mm2. The 3-dB bandwidth is from 188 to 192 GHz with 16.3 dB peak gain.

參考文獻


[1] Fisher, R., “60 GHz WPAN standardization within IEEE 802.15.3c,” in IEEE International Symposium on Signals, Systems and Electronics, 2007.
[2] H. Asada, K. Bunsen, K. Matsushita, R. Murakami, B. Qinghong, A. Musa, T. Sato, T. Yamaguchi, R. Minami, T. Ito, K. Okada, and A. Matsuzawa, "A 60 GHz 16Gb/s 16QAM low-power direct-conversion transceiver using capacitive cross-coupling neutralization in 65 nm CMOS," in IEEE Solid State Circuits Conference (A-SSCC), 2011 Asian, 2011, pp. 373-376.
[4] A. Tessmann et al. “Metamorphic HEMT MMIC and modules for use in a high-bandwidth 210 GHz radars,” IEEE J. Solid-State Circuits, vol. 43, no. 10, pp. 2194-2205, Sep. 2008.
[5] M. Urteaga et al., “G-band (140-220-GHz) InP-based HBT amplifiers,” IEEE J. Solid-State Circuits, vol. 38, no. 9, pp. 1451-1456, Sep. 2003.
[6] L. Samoska et al., “A 20 mW, 150GHz InP HEMT MMIC power amplifier module,” IEEE Microwave Wireless Compon. Lett., vol. 14, no. 2, pp. 56-58, Feb. 2004.

被引用紀錄


何柄翰(2013)。應用於毫米波波段之砷化鎵與矽鍺放大器之設計與砷化鎵微波元件常溫與低溫模型之研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2013.03067

延伸閱讀