透過您的圖書館登入
IP:3.139.83.7
  • 學位論文

奈米空腔薄膜半導體光檢測器

Nanocavity Based Thin Film Semiconductor Photodetector

指導教授 : 劉建豪
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


薄膜半導體光檢測器本身具有極為優異的光電性質,相較於塊體半導體,將半導體材料厚度縮減至奈米尺度時,對於載子的汲取與傳輸能力都有顯著的提升。然而在將半導體厚度縮小的同時,吸收率卻也跟著大幅下降,因此增進薄膜材料的吸收一直是熱門的研究議題。 利用奈米共振腔或著局域表面電漿子共振來增強薄膜材料吸收是近年所提出的設計,兩者雖都在特定波長下有極高吸收,但都有金屬損耗的問題產生,會導致光檢測器的電流響應下降許多。 本研究針對奈米共振腔設計進行改善而提出新型設計-雙層奈米共振腔設計,我們利用有限元素法套裝軟體進行分析,與舊有奈米共振腔設計及局域表面電漿子共振設計比較相關光電性質。在1027nm,雙層共振腔設計在半導體材料吸收率比單層共振腔提升11%,光電流大小提升8%;在1435nm,雙層共振腔設計在半導體材料吸收率比單層共振腔提升46%,光電流大小提升30%,甚至各模擬數值上能貼近局域表面電漿子共振的設計,預期能利用較簡單的製程也能達到相同的薄膜增強效果。 本研究提出新型的雙層奈米共振腔設計,在模擬上有效的增強薄膜吸收,期望之後能將此設計在製程上實現,並透過儀器量測驗證模擬結果,或將此設計應用於其他薄膜材料的吸收增強,開發出性質更為優異的薄膜半導體光檢測器。

並列摘要


Thin film semiconductor photodetectors have great optoelectronic characteristic. Comparing to bulk semiconductors, extraction and transportation of carrier will be enhanced when thickness of semiconductor reduce to nano-scale. However, there is a trade-off between thickness and absorption. Therefore, improving the absorption of thin film materials is an attractive research topic. In recent years, researchers took advantages of Nanocavity and Localized Surface Plasmon Resonance(LSPR) as two different mechanisms to enhance the absorption of thin film. Although both mechanism could reach high level absorption in the specific wavelength, metal loss will cause the photocurrent response of the photodetector to drop. This research improved the nanocavity design and proposed a new design-two layers nanocavity design. We analyzed nanocavity design and LSPR design with FEM software and compare their optoelectronic characteristic. In 1027nm wavelength, two layers nanocavity design improved the absorption of semiconductor materials by 11% and photocurrent by 8% compared with the one layer nanocavity design. In 1465nm wavelength, two layers nanocavity design improved the absorption of semiconductor materials by 46% and photocurrent by 30% compared with the one layer nanocavity design. The absorption and photocurrent is numerically close between two layers nanocavity design and LSPR design. We expected to achieved the same effect of thin film enhancement by a simpler process. We proposed a new design to enhance thin film absorption in simulation. In the future, we will verify the result of simulation by processes and measurement. We can also use other semiconductor material in two layer nanocavity design to realize higher-performance thin film photodetector.

參考文獻


[1] L. Zhang, Y.-C. Liang, and D. Niyato, “6G Visions: Mobile ultra-broadband, super internet-of-things, and artificial intelligence,” China Commun., vol. 16, no. 8, pp. 1–14, 2019.
[2] M. Z. Chowdhury, Md. Shahjalal, S. Ahmed, and Y. M. Jang, “6G wireless communication systems: Applications, requirements, technologies, challenges, and research directions,” IEEE Open J. Commun. Soc., vol. 1, pp. 957–975, 2020.
[3] P. Yang, Y. Xiao, M. Xiao, and S. Li, “6G wireless communications: Vision and potential techniques,” IEEE Netw., vol. 33, no. 4, pp. 70–75, 2019.
[4] Z. Zhang et al., “6G wireless networks: Vision, requirements, architecture, and key technologies,” IEEE Veh. Technol. Mag., vol. 14, no. 3, pp. 28–41, 2019.
[5] T. Huang, W. Yang, J. Wu, J. Ma, X. Zhang, and D. Zhang, “A survey on green 6G network: Architecture and technologies,” IEEE Access, vol. 7, pp. 175758–175768, 2019.

延伸閱讀