透過您的圖書館登入
IP:13.58.252.8
  • 學位論文

甲醇微燃料反應器之最佳化設計

Optimal design of microreactors for methanol fuel processing

指導教授 : 張煖

摘要


微技術之發展已促使利用臨場重組產氫之微燃料處理系統,以應用於可攜式燃料電池,成為可行。微燃料處理系統之微裝置的設計直接影響系統之能源利用效率。本論文使用計算流體力學(Computational Fluid Dynamics, CFD)軟體FLUENT,完成板翅型塗佈觸媒甲醇蒸汽重組反應器之模擬。模擬結果所獲熱傳與質傳係數與傳統尺寸關聯式之預測值有相當差異。本論文並應用整合式多目標最佳化(Integrated Optimization System),包括實驗設計法(Design of Experiment, DOE)、CFD模擬、反應表面法(Response Surface Method, RSM)以及基因演算法(Genetic Algorithm, GA)進行最佳化分析。在裝置設計參數部分考慮氫氣產率及壓降之雙目標函數,在操作條件部分則考慮氫氣產率、氫氣產量與出口一氧化碳濃度之三目標函數。裝置設計參數最佳化設計結果顯示,觸媒塗佈厚度對兩個目標函數的影響有清楚之方向性,而通道數目對兩個目標函數而言則較無明確方向性。反應器操作條件之最佳化結果顯示,這些最佳解是由氫氣產量與出口一氧化碳濃度之妥協關係決定,其他兩組目標函數間則較無清楚的妥協關係。

並列摘要


The development of microtechnology has made possible the micro fuel processing system for in-situ hydrogen supply to portable fuel cells. The design of the micro devices of the micro fuel processing system is crucial to the fuel utilization efficient. In this thesis, the plate-fin catalyst coated microreactor for methanol steam reforming is simulated using Computational Fluid Dynamics (CFD) software FLUENT. The simulation results indicate that the heat and mass transfer coefficients are different from that predicted by the correlations for traditional devices. An integrated optimization scheme, involving design of experiment, computational fluid dynamics simulation, response surface model and genetic algorithm, is further adopted for the multiobjective optimization analysis. For the device design parameters, the objective functions considered are the pressure drop and the hydrogen yield. For the operating conditions, the objective functions considered are the hydrogen yield, the hydrogen production rate and the carbon monoxide concentration in the product. The optimal solutions show clear effects of the catalyst coating thickness on the two objective functions, on the other hand, the effects of the number of channels is unclear. For the operating conditions, the optimal solutions show obvious trade-off relation on the hydrogen production and the carbon monoxide concentration, but not so for the other two pairs of the objective functions.

參考文獻


Box, G. E. P., Wilson, K. B., “On the experimental attainment of optimum conditions,” Journal of the Royal Statistical Society, Series B, 1951, 13(1), 1-45.
Chen, F., Chang, M.-H., Kuo, C.-Y., Hsueh, C.-Y. Yan W.-M., “Analysis of a Plate-Type Microreformer for Methanol Stream Reforming Reaction,” Energy Fuels, 2009, 23, 5092-5098.
Commenge, J. M., Falk, L., Corriou J.P., Matlosz, M., “Optimal design for flow uniformity in microchannel reactors,” AIChE Journal, 2002, 48, 345-358.
Delsman, E. R., de Croon, M. H. J. M., Kramer, G. J., Cobden, P. D., Hofmann, C., Cominos, V., Schouten, J.C., “Experiments and modelling of an integrated preferential oxidation–heat exchanger microdevice,” Chemical Engineering Journal, 2004, 101, 123-131.
Holladay, J. D., Wang, Y., Jones, E., “Review of developments in portable hydrogen production using microreactor technology,” Chemical Reviews, 2004a, 104, 4767-4790.

延伸閱讀