透過您的圖書館登入
IP:3.149.255.162
  • 學位論文

甲醇蒸氣重組器之效能分析與優化研究

Analyzing and Enhancing Performance of Methanol Steam Reformer

指導教授 : 曾繁根 楊重熙
本文將於2024/08/26開放下載。若您希望在開放下載時收到通知,可將文章加入收藏

摘要


甲醇重組產氫反應器可在燃料電池系統將液態甲醇燃料轉換成富有氫氣的氣體,解決氫氣儲存和運輸的困難,極具發展潛力。其中甲醇蒸氣重組反應(SRM)比起甲醇部分氧化反應(POM)有著較高的單位甲醇產氫量以及較低的一氧化碳濃度,然而其缺點是較高的工作溫度以及SRM反應為吸熱反應,因此需要額外的加熱裝置。   本研究的反應器以瑞士捲流道設計,利用計算流體力學(CFD)來模擬三維的甲醇蒸氣重組反應器,使用的觸媒為Cu/ZnO/Al2O3。利用Amphlett et al.[1]所推導出的甲醇蒸氣重組的反應動力學模型為基礎進行模擬計算,模擬在不同入口的水醇比、牆壁溫度對甲醇轉換率、氫氣選擇率以及一氧化碳選擇率造成的影響,並設計出能用於100W磷酸燃料電池的重組器。在結果中顯示,重組器在270OC時,有著約85%的轉換率,且產氫量有1700sccm,CO濃度為1.3%。

並列摘要


Steam Reforming of methanol(SRM) reaction,which composes Oxidative Steam Reforming of Methanol (OSRM) reaction, has higher hydrogen produciotn per methanol molecular, and lower carbon monoxide concentration.Because SRM reaction is endothermic reaction,it needs extra heat source to maintain work temperature. A Swiss-Roll channel was designed for the reactor used in this study. Modeling and CFD simulation three-dimentional microreactor to study hydrogen production via steam reforming of methanol reaction over a Cu/ZnO/Al2O3 catalysts.The reaction kinetic rate expression reported by the Amphlett et al.[1]are considered to model the steam reforming of methanol reaction and design a reformer for a 100W phosphoric acid fuel cell. The result show that The reformer has a conversion rate of about 85% , and its hydrogen production and CO concentration are 1700sccm and 1.3% respectively.

參考文獻


[1] J.S. Suh, M.T. Lee, R. Greif, C.P. Grigoropoulos, A study of steam methanol reforming in a microreactor Journal of Power Sources ,2007;173:458–466
[2] J.C. Amphlett, K.A.M. Creber, J.M. Davis, R.F. Mann, B.A. Peppley, D.M. Stokes, Hydrogen production by steam reforming of methanol for polymer electrolyte fuel cells Int. J. Hydrogen Energy 19 (1994) 131–137.
[3] J.S.Suh, M.T.Lee , R. Greif, P.Costas, Grigoropoulos CP. Transport phenomena in a steam–methanol reforming micro-reactor with internal heating. Int J Hydrogen Energy 2009;34:314–22.
[4] H. Purnama, T. Ressler , R.E. Jentoft, H. Soerijanto, R.Schlogl, R.Schomacker. CO formation/selectivity for steam reforming of methanol with a commercial CuO/ZnO/Al2O3 catalyst. Appl Catal A 2004;259:83–94
[5] W.H. Chen, M.R.Lin , T.L.Jiang , M.H. Chen . Modeling and simulation of hydrogen generation from high temperature and low-temperature water gas shift reactions. Int J Hydrogen Energy 2008;33:6644–56.

延伸閱讀