透過您的圖書館登入
IP:3.133.161.153
  • 學位論文

磁性氧化鐵奈米粒子對斑馬魚的生物相容性及運動上之研究

Biocompatibility and locomotion analysis of zebrafish(Danio rerio) with magnetic nanoparticles effect

指導教授 : 葉炳宏

摘要


由於近年來的奈米科技快速發展,奈米材料已應用在相當多的範圍。奈米材料對環境與生物的衝擊與影響必須要審慎地被討論,尤其是常見的奈米材料對環境生物的生長與行為的影響更值得我們研究。氧化鐵是常見補充人體內鐵質的元素,也被應用在許多廣泛的地方,例如:磁紀錄原件、區域熱治療和應用在藥物傳送的相關研究。本實驗將針對氧化鐵奈米粒子對斑馬魚的生物相容性及運動行為進行研究。利用奈米氧化鐵的磁性物理特質進一步觀察攝取氧化鐵奈米粒子後的斑馬魚對外加磁場的環境下其行為上之變化。

關鍵字

氧化鐵 奈米粒子 斑馬魚 胚胎 注射 毒性 行為 外加磁場

並列摘要


Magnetic nanomaterial has extensive potential for many applications, such as magnetic recording media, localize heating treatment, and drug delivery systems for pharmaceutical cure in vivo. However, the toxicology and biocompatibility of magnetic nanoparticles(NPs) should be studied. In this work, the security and impact of magnetic NPs, iron oxide, were investigated by injecting and feeding iron oxide NPs into zebrafish embryos and adult zebrafish to check the ethology, respectively. From death, mortality, hatching, deformity rate and morphology during embyro-larval stages, and ethology analysis for adult zebrafish, we infer that the toxicity of iron oxide nanoparticles is a dose-dependent tendency in zebrafish. When the feeding magnetic NPs concentration was increasing, the magnetic field will strong affect the moving trace of the zebrafish, like an invisiable wall to limit the movement.

並列關鍵字

iron oxide nanoparticles zebrafish embryo inject toxicity locomotion magnetic field

參考文獻


[28] 許家達; 王寶榮; 張志華; 劉振軒; 禽類血色素沉著症:五十二例回朔性探討; Taiwan Vet. J. 2008, 34, 121-126.
[1] Bae, K. H.; Park, M.; Do, M. J.; Lee, N.; Ryu, J. H.; Kim, G. W.; Kim, C. G.; Park, T. G.; Hyeon, T. Chitosan Oligosaccharide-Stabilized Ferrimagnetic Iron Oxide Nanocubes for Magnetically Modulated Cancer Hyperthermia. ACS Nano 2012, 6, 5266-5273.
[2] Dennis, C. L.; Jackson, A. J.; Borchers, J.A.; Ivkov, R.; Foreman, A. R. ; Hoopes, P. J.; Strawbridge, R.; Pierce, Z.; Goerntiz, E.; Lau, J. W.; Gruettner, C. The Influence of Magnetic and Physiological Behavior on the Effectiveness of Iron Oxide Nanoparticles for Hyperthermia. J. Phys. D: Appl. Phys. 2008, 41, 134020-134025.
[3] Ge, J.; Neofytou, E.; Cahill, T. J.; Beygui, R. E. B.; Zare, R. N. Drug Release from Electric-Field-Responsive Nanoparticles. ACS Nano 2011, 6, 227-233.
[4] Xu, F.; Inci, F.; Mullick, O.; Gurkan, U. A.; Sung, Y.; Li, B.; Denkbas, E. B.; Demirci, U. Release of Magnetic Nanoparticles from Cell-Encapsulating Biodegradable Nanobiomaterials. ACS Nano 2012, 8, 6640-6649.

延伸閱讀