透過您的圖書館登入
IP:3.143.23.176
  • 學位論文

廢玻璃與垃圾焚化飛灰資源化作為調濕陶瓷原料之生命週期評估

A study on the Life Cycle Assessment of the Recycling Process of MSWI Fly Ash with Waste Glass for Producing Humidity-Controlling Ceramic Material

指導教授 : 高思懷

摘要


廢玻璃的回收量逐年增加,再利用技術可有效達到廢玻璃資源化使增加廢玻璃的應用性,而飛灰資源化為目前處理飛灰最佳的可行方案,但是在研發資源化技術過程中,必須同時考慮資源化對整體環境的負載,以免解決了飛灰的問題,卻帶來更多的環境問題;因此如果能在研發的階段便導入生命週期思維,並模擬評估日後實廠的狀況,如此一來便能更清楚的掌握研發的方向,進而使日後研發出來飛灰資源化的技術對整體環境負載能降到最低。 本研究運用生命週期評估技術,來模擬都市焚化飛灰資源化實廠化後對環境的影響,並使用生命週期軟體GaBi 5來分析;以本研究室研發的廢玻璃與焚化飛灰資源化為調濕陶瓷材料之技術為模擬分析的對象並提出改進方案;利用廢玻璃與高嶺土作為黏結劑,加入具多孔特性之都市垃圾焚化飛灰,並運用燒製的技術使其具有成為調濕陶瓷原料之潛力。本研究依照實驗團隊得知有二種配比分別為廢玻璃粉60%、高嶺土20%、焚化飛灰20%(GKF-622)及廢玻璃粉60%、高嶺土30%、焚化飛灰10%(GKF-631)均符合日本調濕陶瓷材料規範 JIS A 1470-1:2008及CNS3299-4 陶瓷面磚試驗法之標準,以兩種不同配比進行生命週期評估之比較。生命週期衝擊評估以Eco-Indicator 99指標來評估對人體健康、生態及資源的損害衝擊。 結果發現利用廢玻璃與垃圾焚化飛灰製作成陶瓷調濕材料之製程中,燒結製程天然氣使用對環境所造成的環境負荷最大、其次是電力使用。結果顯示配比較佳為GKF-631。生產1公斤調濕陶瓷材料濕陶瓷材料對環境衝擊最大為資源耗用(Resources) 5.65 Pt,次要為人體健康(Human health) 2.13E-01 Pt最小為生態系統(Ecosystem Quality) 1.51E-02 Pt。以各製程中對環境衝擊大小為:燒結製程>飛灰水萃製程>調質製程>廢玻璃粉製程>成型製程,因此對環境相對最友善也可作為日後研發的方向。

並列摘要


In Taiwan, the quantity of waste glass recycling has increased over years. Current recyclable technology can effectively achieve the purpose of the waste glass recycling. Recycling is also the best way to manage municipal solid waste incinerator (MSWI) fly ash. However, the whole environmental load affected by the treatment process need to be consider, which can avoid to generate more environmental problems. Thus, if the Life Cycle Assessment(LCA) could be introduced at the initial stage of research and with full-scale simulation, we might have a better sense of direction and could improve the technique of the fly ash recycling that can reduce the environmental impact. This study used LCA to simulate the effect of recycling process of the MSWI fly ash and analyzed the environmental impact by Gabi of Life Cycle Assessment Software. This recycling technique of the MSWI fly ash with waste glass to manufacture humidity-controlling ceramic material can provide improving solutions accordingly. Waste glass, kaolinite and fly ash are the porous material and foaming agent, which can be synthesized by sintering technology to produce humidity-controlling ceramic material. The results of experiment indicate that there are two composition ratios can meet the standard of Japan humidity-controlling ceramic material specification and which would conform to CNS3299-4 standard. These ratios are 60% waste glass powder, 20% kaolinite and 20% fly ash (GKF-622); and 60% waste glass powder, 30% kaolinite, 10% fly ash (GKF-631). By using to the two ratios, this study accesses their lifecycles respectively. LCA used Eco-Indicator 99 index of Gabi5 to access the impact of human health, ecosystem and resources. The result of the LCA shows that the best ratio of GKF is GKF-631. The main environmental impact for producing 1 Kg of humidity-controlling ceramic material is 5.65Pt of resource consumption. The minor environmental impact is 2.13E-01Pt of human health. The minimal environmental impact is 1.51E-02 Pt of ecosystem quality. The order of environment impact in each process is as following: sintering process > water extraction process of MSWI fly ash > adjusting process > waste glass powdering process > molding process.

參考文獻


張韋豪 (2011),「台灣半導體產業環境管理與碳足跡現況及生命週期評估軟體需求探討」,臺北科技大學環境工程與管理研究所碩士論文。
葉耀婷 (2009),「矽酸鹽類材料之調濕性能探討」,元智大學化學工程與材料科學學系碩士論文。
蕭錫卜 (2010),「都市垃圾焚化飛灰添加於紅磚進料之生命週期評估」,淡江大學水資源及環境工程學系研究所碩士論文。
Abe, S., F. Kambayashi and M. Okada (1996), " Ash Melting Treatment by Rotating Type Surface Melting Furnace", Waste Management, 16(No.5/6): 431-443.
Arundel, A. V., E. M. Sterling, J. H. Biggin and T. D. Sterling (1986), "Indirect health effects of relative humidity in indoor environments", Environmental Health Perspectives, 65: 351.

被引用紀錄


鄭富瑜(2016)。垃圾焚化飛灰與吸附水萃廢水之坡縷石共同研磨穩定之生命週期評估〔碩士論文,淡江大學〕。華藝線上圖書館。https://doi.org/10.6846/TKU.2016.00254
唐晟哲(2015)。太陽能薄膜蒸餾與傳統逆滲透海水淡化系統生命週期評估之比較〔碩士論文,淡江大學〕。華藝線上圖書館。https://doi.org/10.6846/TKU.2015.00165

延伸閱讀