透過您的圖書館登入
IP:3.147.104.120
  • 學位論文

混摻聚乙二醇與1,2,3-三脫氧-4,6:5,7-雙-O-[(4-丙苯基)亞甲基]-壬醇有機膠之結構、性質與應用研究

Studies on the structures, properties and application of composites of poly(ethylene glycol) and 1,2,3-trideoxy-4,6:5,7-bis-o-[(4-propylphenyl)methylene]-nonitol

指導教授 : 賴偉淇
本文將於2027/07/31開放下載。若您希望在開放下載時收到通知,可將文章加入收藏

摘要


本研究用低分子量聚乙二醇(poly(ethylene glycol) , PEG)與碳酸乙烯酯(ethylene Carbonate, EC)以不同重量比例進行物理摻合,再摻入不同含量1,2,3-三脫氧-4,6:5,7-雙-O-[(4-丙苯基)亞甲基]-壬醇(1,2,3-trideoxy-4,6:5,7-bis-o-[(4-propylphenyl)methylene]-nonitol, TBPMN)作為膠化劑混摻加熱熔融後,再用過氯酸鋰(lithium perchlorate, LiClO4)摻合可得新型態高分子複合電解液,其中導電度最佳比例之系統再添加二氧化矽(silicon dioxide, SiO2)以增加有機膠的強度及提升熔解溫度及導電度。藉由材料膠態的特性期盼改善電解質封裝不易性質,最後對複合電解質進行分析。 由傅立葉轉換紅外光譜 (Fourier-transform infrared spectroscopy, FTIR)分析結果得知添加鋰鹽會與系統中的末端基形成錯合物;利用穿透式電子顯微鏡 (transmission electron microscope, TEM)觀察得知,纖維結構的直徑約在5-400 nm間;利用偏光顯微鏡 (polarizing microscope, POM) 觀察到雙折射結晶為纖維狀,並再升降溫過程中有良好的回復性;流變儀(rheometer)分析結果得知未含有鋰鹽的膠體隨著EC含量增加,膠體能承受的形變量下降;隨著TBPMN、SiO2增加,有較高機械強度、可承受更大的形變量,且熔解溫度(Td)隨著EC的含量增加而降低、隨著TBPMN、SiO2增加而提升,成膠時間及成膠溫度(Tf)也有相同趨勢;由電化學阻抗圖譜(electrochemical impedance spectroscopy, EIS)可得知,比例為3% TBPMN/[(PEG/EC:50 /50)/LiClO4:15/1]有最佳導電度為7.90×10-4 (±3.72×10-5) S/cm,將此系統再添加4% SiO2可達到的導電度為8.40×10-4 (±3.02×10-5) S/cm。 以不同電解質製作簡易電容器並比較電容應用的影響,由線性掃描伏安分析(Linear sweep voltammetry, LSV)可以得知添加TBPMN會使電解質的電化學穩定性上升,添加EC會使之下降,添加少量的SiO2有最好的電化學穩定性;轉移數分析(Transference number measurement, TNM)可以得知電解質系統中的傳輸機制是以離子為主,而最高的初始電流為4wt% SiO2/[3wt% TBPMN/(PEG/EC=50/50)]有最高的導電性,符合導電性結果;循環伏安分析(Cyclic voltammetry, CV)可以得知掃描速率越慢,比電容的值越大,添加EC及少量的SiO2比電容有明顯上升,經多次充放電後的電容量下降越少;恆電流充放電(Galvanostatic Charge-discharge, GCD)可以得知隨著電流密度減少,放電時間變長、比電容變大,且充電所需的時間比放電所需的時間多,添加EC後比電容變大、循環壽命較長。

並列摘要


In this study, low molecular weight poly(ethylene glycol), (PEG) and ethylene Carbonate (EC) were physically blended in different weight ratios, and then blended with different contents of 1,2,3-trideoxy-4,6:5,7-bis-o -[(4-propylphenyl)methylene]-nonitol (TBPMN) is mixed as a gelling agent, heated and melted, and then mixed with lithium perchlorate (LiClO4) to obtain a new type of polymer composite electrolyte, in which the system with the best ratio of conductivity add silicon dioxide (SiO2) to increase the strength of the organic glue and improve the melting temperature and conductivity. Based on the colloidal properties of the material, it is expected to improve the encapsulation difficulty of the electrolyte, and finally the composite electrolyte is analyzed. According to Fourier-transform infrared spectroscopy (FTIR) analysis results, it is known that the addition of lithium salt will form complexes with the end groups in the system. Transmission electron microscope (TEM) observation, the width of the fiber structure is about 5-400 nm. Using polarizing microscope (POM) observed that the birefringent crystals are fibrous and have good recovery during the heating and cooling process. The rheometer analysis results show that as the content of EC increases, the deformation that the colloid can withstand decreases. TBPMN and SiO2 increases, has higher strength, can withstand greater deformation, and the melting temperature (Td) decreases with the increase of EC content, and increases with the increase of TBPMN and SiO2. It can be known from electrochemical impedance spectroscopy (EIS) that the ratio is 3 %TBPMN /[(PEG/EC=50/50):LiClO4=15:1] has the best conductivity of 7.90×10-4 (±3.72×10-5) S/cm, and 4% SiO2 into this system the achievable conductivity is 8.40×10-4 (±3.02×10-5) S/cm. Using different electrolytes to make simple capacitors and compare the effect of capacitor application, from Linear sweep voltammetry (LSV) can know that adding TBPMN will increase the electrochemical stability of the electrolyte, adding EC will decrease it, adding a small amount of SiO2 has the best electrochemical stability Chemical stability. Transference number measurement (TNM) can know that the transport mechanism in the electrolyte system is mainly ions, and the highest initial current is 4wt% SiO2/3% TBPMN/(PEG/EC=50/50) has The highest conductivity is consistent with the conductivity results. Cyclic voltammetry (CV) can know that the slower the scan rate, the larger the specific capacitance value, the specific capacitance of adding EC and a small amount of SiO2 increases significantly, and the capacitance decreases after multiple charging and discharging the less. Galvanostatic Charge-discharge (GCD) can be seen that as the current density decreases, the discharge time becomes longer and the specific capacitance becomes larger, and the time required for charging is longer than the time required for discharging. After adding EC, the specific capacitance becomes larger and the cycle life is longer.

參考文獻


[1] W.-C. Lai and Y.-C. Lee, "Self-assembly behavior of gels composed of dibenzylidene sorbitol derivatives and poly (ethylene glycol)," RSC advances, vol. 6, no. 100, pp. 98042-98051, 2016.
[2] W. R. Schowalter, " Mechanics of non-Newtonian fluids.," Oxford:Pergamon press, pp. 144-147, 1978.
[3] J. Barnes, The presocratic philosophers. Routledge, 2002.
[4] J. F. Steffe, Rheological methods in food process engineering. Freeman press, 1996.
[5] 陳劉旺、丁金超, "高分子加工," 高粒圖書有限公司, 2003.

延伸閱讀