透過您的圖書館登入
IP:3.128.198.21
  • 學位論文

新型渦流捕捉顆粒晶片之設計

Design of New Vortex-based Flow Chips to Capture Particles

指導教授 : 楊龍杰

摘要


本文主要在設計新型的捕捉顆粒生物晶片,先透過COMSOL軟體進行計算流體力學的模擬,了解於此設計中會產生之速度流場以及顆粒的運動狀態。此生物晶片將蜻蜓翼與微流道結合在一起,利用蜻蜓翼在流動時會於翅膀皺摺凹陷處產生渦旋之特性,擬於微流道內產生低雷諾數渦旋,進行微顆粒之捕捉。 本文著重於仿蜻蜓翼生物晶片的設計與三維粒子流動模擬,希望得到較好的顆粒抓取效果。經重複嘗試,對於寬度200μm的微流道,蜻蜓翼連續壁弦長806μm,連續壁厚度61μm,入口流速0.52 m/s可產生明顯的蜻蜓翼渦流;入流口賦予50。的入流傾角,可增強微流道之起始渦度,有利顆粒捕捉(50顆約可捕捉2顆;捕捉率4%),本文也嘗試階梯式兩只蜻蜓翼串接的流場模擬,適當橫向增胖蜻蜓翼尺寸一倍,捕獲率可達6%;對於未來進一步擴充為陣列式顆粒捕捉器具有應用參考價值。

關鍵字

生物晶片 蜻蜓翼 渦旋 微流道

並列摘要


This work presents the design of a new flow chip to capture particles. A dragonfly wing blocks along the centerline of a microchannel to generate multiple vortex in the corrugated grooves streamwisely. These multiple vortex in the dragonfly wing are used to capture more particles. Different from the conventional vortex-based flow chips with rectangular grooves along the both sides channel wall, the dragonfly wing grooves here in is designed to capture central -part particles novelly. The chord length of the dragonfly wing is 806 μm and thickness ratio is 7.5 %. Through the CFD simulation result (by COMSOL or FEMLAB), the inlet velocity of 0.52m/s can induce obvious vortex pattern in the corrugated dragonfly wing inserted in a microchannel of 200μm wide. The inclined angle of 50。at the channel entrance can provide enough initial vorticity strength beneficial to the particle capture rate of 4% per dragonfly wing structure. This work also tried two dragonfly structure cascadedly connected together. When the thickness ratio of the dragonfly wing double, the cascaded two-wing case can increase the capture ratio up to 6%. These simulation message reveals the usefulness of increasing the particle capture ratio of flow array design. It’s also good for the integration and application in tumor cell capture, sorting and separation in the future.

並列關鍵字

Biochips Dragonfly wing Vortex Microfluidic

參考文獻


[7] J. M. Wang and L. J. Yang, “ Electro-hydro-dynamic (EHD) micropumps with electrode protection by parylene and gelatin, ” Tamkang Journal of Science and Engineering, 8 (3), pp. 231-236, 2005.
[8] 劉冠君 , “ 圓管挫曲式微型閥門之研製 ” , 淡江大學機械與機電工程學系碩士論文,2006 年 6 月。
[30] 黃韋翔, 梳狀微流道內微顆粒分離實驗,國立中興大學碩士論文, 2009。
[4] C. Liu, J. B. Huang, Z. Zhu, F. Jiang, S. Tung, Y. C. Tai, and C. M. Ho, “ A micromachined flow shear-stress sensor based on thermal transfer principles, ” Journal of Microelectromechanical Systems, 8 (1), pp. 90-98, 1999.
[5] C. Liu, T. Tsao, G. B. Lee, J.T.S. Leu, Y.W. Yi, Y. C. Tai, and C. M. Ho, “ Out-of-plane magnetic actuators with electroplated permalloy for fluid dynamics control, ” Sensors and Actuators, A: Physical, 78 (2), pp. 190-197, 1999.

被引用紀錄


邱志軒(2016)。新型渦流捕捉顆粒晶片之研製〔碩士論文,淡江大學〕。華藝線上圖書館。https://doi.org/10.6846/TKU.2016.01107

延伸閱讀