透過您的圖書館登入
IP:3.145.47.253
  • 學位論文

基於FPGA高精度頻率調控電路實現

Implementation of High-precision Frequency Control Circuit Based on FPGA

指導教授 : 李世安

摘要


本論文實現一個基於FPGA高精度頻率調控電路,透過本論文所提出的分插式高精度動態頻率調變系統,能讓超音波諧振系統能更快且穩定的達到工作狀態,用來完成特定之工業應用。在諧振狀態之下,能夠將能量有效轉換為動能,節省能量散失。本論文並且實現一實體FPGA電路板,使得分插式高精度動態頻率調變系統能在10KHz~100KHz之廣幅度頻率下得以諧振。本論文比較三種頻率調變系統之實際諧振狀況,整數型頻率調變架構、高精度動態頻率調變系統、分插式高精度動態頻率調變系統,其中以分插式高精度動態頻率調變系統在效率及穩定時間有最好表現。綜合上述,本論文所提出的分插式高精度動態頻率調變系統確實可增進超音波諧振系統的實際運作,並減少因為能量轉換效率不良問題所帶來的熱能及系統損壞。

並列摘要


This paper implements a high-precision frequency control circuit based on FPGA. Through the high-precision frequency modulation system proposed in this paper, the ultrasonic resonance system can be operated more quickly and stably for specific industrial applications, and also under the resonant state, energy can be efficiently converted into kinetic energy, saving energy loss. This paper also implements a physical FPGA circuit board, so that the high-precision frequency modulation system can resonate at a wide amplitude frequency of 10KHz~100KHz. This paper compares the actual resonance conditions of three frequency modulation systems, integer frequency modulation architecture, high-precision frequency modulation system, interpolation of high-precision frequency modulation system, in which the interpolation of high-precision frequency modulation system has the best performance in efficiency and stability time. In summary, the interpolation of high-precision frequency modulation system proposed in this paper can improve the operation of the ultrasonic resonance system and reduce the thermal energy and system damage caused by the poor energy conversion efficiency.

參考文獻


[1] 島川正憲著,賴耿陽譯,超音波工學理論實務,復漢出版社印行,民國八十一年再版
[2] Yu Tao, Lee Hwachun, Lee Dongheon, Song Sunggun, Kim Dongok, and Park Sungjun, “Design of LC Resonant Inverter for Ultrasonic Metal Welding system,” 2008. ICSMA International Conference on Smart Manufacturing Application, pp.543-548, 9-11 April 2008.
[3] Jun-Ho Lee, Hwa-Chun Lee, Jun-Ho Choi, Sung-Jun Park, Hae-Gon Nam, “10kW industrial ultrasonic welder design,” 2009 31st International Telecommunications Energy Conference(INTELEC), pp.1-6, 18-22 Oct. 2009.
[4] G.V. Blessing, N.N. Hsu, J.A. Slotwinski, and D. Xiang, “Ultrasonics research in the NIST Manufacturing Engineering Laboratory.” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.47, no.3, pp.630-634, May 2000.
[5] Lorenzo Parrini, “Design of Advanced Ultrasonic Transducers for Welding Devices.” IEEE Trans. Sonics Ultrason., vol.48, no.6, pp. 1632-1639, Nov 2001.

延伸閱讀