透過您的圖書館登入
IP:13.59.82.167
  • 學位論文

仿生積層製造多孔鈦六鋁四釩骨植入物的開發

Development of biomimetic porous Ti6Al4V implant by additive manufacturing

指導教授 : 高嘉澤

摘要


積層製造(Additive Manufacturing)所製作的多孔鈦金屬植入物是近年來開發金屬骨科醫材的新趨勢。過去的研究亦證實多孔鈦植入物能加強植入物在體內的穩定性,並且方便控制支架的的孔隙大小及機械強度,減少對天然骨頭的傷害。然而鈦支架的生物惰性導致無法自體有效地促進骨組織生長及分化,因此本研究是使用選擇性雷射熔融技術(Select Laser Melting)搭配 Ti6Al4V ELI 金屬粉末印製的多孔鈦支架中填充不同比例之幾丁聚醣(Chitosan)及矽酸鈣(Calcium silicate)進行修飾,是經由冷凍乾燥技術將鈦多孔支架製備成具有仿生構造的複合支架,並觀察支架的親疏水性、分析相的組成及支架結構的表面型貌,並且進行支架的機械強度測試,後續並以人類間質幹細胞(hMSCs)進行體外的細胞生物相容性及骨分化試驗。本實驗也將仿生支架植入兔子的腿骨中,觀察新生骨在多孔支架內的礦化程度。實驗結果顯示仿生支架並不會影響本體結構的機械特性,且能有效提升鈦支架表面的親水性。而在體外的生物相容性測試中,隨著矽酸鈣含量越多的仿生支架,無論是細胞貼附、細胞增生以及分化的效果也都隨著實驗天數的增加而有顯著的提升。在動物實驗方面,也明顯看得出來仿生支架有染到鈣礦化後的新生骨型態。經實驗結果說明本研究所開發的仿生複合支架是有潛力應用在未來骨組織修復的治療上。

並列摘要


Porous titanium implants made with 3D printing technology are a new trend in the development of metal orthopedics in recent years. Past studies have also confirmed that porous titanium implants can enhance the stability of implants in vivo. However, such porous titanium scaffolds do not promote bone tissue growth and differentiation autonomously and effectively. Therefore, selective laser melting technique was used in this study. Titanium porous scaffolds were printed on Ti6Al4V ELI powders. Subsequent to the 3D printed porous titanium stent modification, filled with different proportions of chitosan and calcium silicate, prepared by freeze-drying in a metal stent into a fibrous sponge-like polymer scaffold, and analysis of the phase composition and scaffold structure The surface pattern. Followed by human mesenchymal stem cells (hMSCs) biocompatibility and bone differentiation test, the experimental results can be clearly observed with the higher proportion of calcium silicate, the intensity with the stronger. Therefore, such methods should have the opportunity to be used in the future for bone tissue repair.

參考文獻


1. Mistry AS and Mikos AG. Tissue Engineering Strategies for Bone Regeneration. 2005, 94, 1-22.
2. Schemitsch EH. Size Matters: Defining Critical in Bone Defect Size! J Orthop Trauma, 2017, 31 Suppl 5, S20-S22.
3. Amin Yavari S, Van Der Stok J, Chai YC, Wauthle R, Tahmasebi Birgani Z, Habibovic P, Mulier M, Schrooten J, Weinans H, and Zadpoor AA. Bone regeneration performance of surface-treated porous titanium. Biomaterials, 2014, 35, 6172-81.
4. Wieding J, Lindner T, Bergschmidt P, and Bader R. Biomechanical stability of novel mechanically adapted open-porous titanium scaffolds in metatarsal bone defects of sheep. Biomaterials, 2015, 46, 35-47.
5. Noort RV. Review Titanium: the implant material of today.pdf. Journal of Materials Science, 1987, 22, 3801-11.

延伸閱讀