透過您的圖書館登入
IP:3.133.12.172
  • 學位論文

以無催化劑輔助的方式於玻璃基板成長氧化鋅奈米柱

Catalyst-Free growth of ZnO nanorods on glass substrates

指導教授 : 洪魏寬
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究利用無催化劑輔助的氣相傳輸方式在玻璃基版上成長氧化鋅(ZnO)奈米柱結構,探討在不同的成長壓力、載流氣體流量、成長時間對於氧化鋅奈米柱形貌的影響,並且以各種緩衝層在450°C與 350°C的環境下成長奈米柱,發現在低溫成長奈米柱時,緩衝層厚度為55nm為最理想。 對ZnO奈米柱,經由X-Ray繞射儀(X-Ray Diffraction, XRD)顯示成長的奈米線以[ [002]方向為主;在光致激發光譜儀(Photoluminescence, PL)來量測氧化鋅奈米柱在室溫下的發光特性後發現只有在3.289eV位置放光,並沒有氧缺陷造成的綠帶放光情形。 以掃描式電子顯微鏡(Scanning Electron Microscopy, SEM)分析其奈米結構外觀,觀察出在玻璃基板成長出垂直於基板的氧化鋅奈米柱;奈米柱的直徑約為30-60nm,長度為0.5-2μm;穿透式電子顯微鏡(Transmission Electron Microscopy, TEM)證實氧化鋅奈米柱以[002]方向成長於鍍有氧化鋅緩衝層之玻璃基板上。

並列摘要


In this paper, a simple gas phase transport method was used for growing the monocrystalline ZnO nanorods on the amorphous glass substrate in the case of no catalyst; the influence of different growing pressures, gas-carrying flows and growing time on the ZnO nanorods were discussed, and various buffer layers were tried to grow the nanorods in the environment of 450℃ and 350℃ and found that the 55nm thick buffer layers are ideal for growing nanorods at low temperature in order to allow the process to reach conditions for growing nanorods at low temperature. We found that the growing nanorods grow in the directions of [100] and [200], of which the zinc oxide [002] is the main growing direction, by means of an X-Ray Diffraction (XRD), and that the ZnO nanorods only glow on the 3.289eV position and have no occurrence of shining greenbelt caused by oxygen defects when the photoluminescence spectrometer was used for measuring the characteristics of luminescence of nanorods at room temperature. With the aid of the scanning electron microscope (SEM), we found that the ZnO nanorods grow vertically on the glass substrate by analyzing the nanometer structure; the nanorods approximate 30nm to 60nm in diameter and 0.5μm to 2μm in length; we used the transmission electron microscope (TEM) to observe the ZnO nanorods and confirmed that they grow on the glass substrate containing the zinc oxide buffer layer in the direction of 002.

並列關鍵字

ZnO nanowire vapor-solid(VS) growth glass

參考文獻


[45] 姜秀日,氧化鋅奈米線成長控制之研究,碩士論文,國立臺北科技大學光電工程研究所,台北,2008。
[1] Guang-Wei She, Xiao-Hong Zhang, Wen-Sheng Shi, Xia Fan, Jack C. Chang,Chun-Sing Lee, Shuit-Tong Lee, and Chang-Hong Liu, “Controlled synthesis of oriented single-crystal ZnO nanotube arrays on transparent conductive substrates,” APPLIED PHYSICS LETTERS 92, 2008.
[2] B. Aleman, P. Fernandez, J Piqueras, “Indium-zinc-oxide nanobelts with superlattice structure,” APPLIED PHYSICS LETTERS, 95, 2009.
[3] William L. Hughes, Zhong L. Wang, "Controlled synthesis and manipulation of ZnO nanorings and nanobows," APPLIED PHYSICS LETTERS, 86, 2005.
[4] X. Y. Kong and Z. L. Wang, Nano Lett. 3, 1625, 2003.

被引用紀錄


蕭志祥(2012)。以無催化劑方式於玻璃基板上的雙層緩衝層結構成長氧化鋅奈米柱〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-1908201215172800

延伸閱讀