本研究論文的目的在於應用以Levenberg–Marquardt擬合法為基礎所發展的載子漂移率分析法,探討有機發光元件(OLED)載子漂移率TEL(Transient Eletroluminescence)測量系統在雜訊的影響下,如何判讀延遲時間點的問題,進而讓所求得的載子漂移率值更客觀且有較高的可信度。利用Levenberg–Marquardt Method對光偵測器響應函數的原始數據進行擬合,找到光偵測器響應函數的最佳擬合函數,並用此函數來判讀延遲時間點,進而求得載子漂移率;最佳擬合函數的結果為容許值設定在小於1×10-8所獲得到的。實驗結果顯示在不同操作變因之下,TEL測量小分子綠光有機發光元件(glass/ITO/NPB/E806/Alq3/LiF/Al)所得到的原始數據,經由載子漂移率分析法所求得的載子漂移率數量級範圍落在10-4到10-3左右;再經過誤差評估後,載子漂移率誤差的數量級範圍落在10-4,也就是說已經包含在載子漂移率分析法所求得的載子漂移率範圍裡,因此可以推得有機發光元件的載子漂移率值,用一個範圍值來描述是比較客觀且有較高的可信度。
This thesis research is to develop an analytical approach of objectively estimating the delay time for measuring carrier mobility of organic light-emitting device (OLED) in transient electroluminescence (TEL) based on Levenberg–Marquardt method under the influence of background noise. Our experimental raw data from the Silicon photodetector were fit to a third-order polynomial for obtaining the best-fit response function with the tolerance less than 1×10-8 by using Levenberg–Marquardt method. The minority carrier mobility is then calculated by the delay time determined from the best-fit response function. Our experimental results of a green-emissive OLED with various operational factors reveal that the order of measured mobility ranges from 10-4 to 10-3 after appraising percentage error. It’s more objective and reasonable to descript the mobility of OLED by a distributed range rather than a single number.