傳統建築物是透過建築內部的獨立空調系統來供應空調需求。若空調供應對象為大範圍建築群的時候,由於各建築物使用性質的不同,空調需求也會有所不同,其總空調負荷量加總起來是相當可觀的;若使用區域冷房系統為架構,將可對能源做最有效的使用與管理,而對於使用端部分亦有不少的好處。 本研究針對園區-建築群進行區域冷房系統設計應用評估,利用建築耗能模擬軟體分析區域冷房與傳統個別獨立中央空調系統的差異,並在區域冷房水側方面模擬冰水二次側的三種運轉模式,進而選擇節能性較佳的設計方式。 模擬結果顯示區域冷房比起一般傳統獨立型中央空調系統,可以節省大約13%的空調裝置容量;冰水側部份,分析結果以二次加壓水泵節能效果最佳,相較於共同二次水泵與分區二次水泵系統,二次水泵耗電量分別降低了60%與5%。 綜合比較案例模擬結果,建築高度對整體冰水管路壓降有很大的影響,能源中心的設置對於最大負荷的區域應保持最短輸送距離,最佳運轉模式為能源中心設立於基地中央,並採用加壓二次泵系統,其機組設備耗電較其他案例為低,未來或許能夠參考實際案例做更進一步的模擬分析。本研究建立區域冷房系統之耗能分析模式,將來可提供新建工程之評估參考依據。
The district cooling system usually supplied chilled water with Primary-Secondary System. This research analyzes the design of the district cooling system for large-scale construction and compares it with the traditional system. We simulate three kinds of secondary chilled water supply mode by the software DOE-2 and choose the best case. The results show the district cooling system could save 13% capacity of the traditional independent one. In the water side, the secondary/boost water pump system has the best energy efficiency. Compared with the common-region secondary pump system, it could save 60% of power consumption of the secondary pump. Finally, we conclude the best running mode is to use secondary/boost water pump system and to set the DHC center in the middle of the site. This research can provide a reference basis of new developed engineering. It is hoped the simulation could be combined with real data of district cooling system in the future.