透過您的圖書館登入
IP:3.129.247.196
  • 學位論文

區域冷房冰水系統節能設計與應用

Design and Application of Energy-Saving Chilled Water System for District Cooling

指導教授 : 柯明村

摘要


本研究以工商綜合區街廓式建築群之區域冷房系統為研究對象,採一/二次管路方式供應空調,兩側各規劃三種冰水運轉模式之流程及設備,並建立其系統之設備耗能分析模式;進而利用電腦模擬分析各種系統運轉模式之能源消耗量,再比較各種冰水系統之整體能源使用效率。 由模擬分析各運轉模式的結果顯示,二次側冰水供應方式以共同區域水泵系統能源效率最差;分區獨立區域水泵系統能源效率次佳,節能比率較共同區域水泵系統預期省能36.2 ﹪;而二次/加壓水泵系統能源效率最佳,節能比率較共同區域水泵系統預期省能42.6﹪。另由一次側冰水系統運轉模式結果顯示,以一次/二次側流量相等時之等溫差冰水系統最省能,但過於理想化;一次側冰水流量小於二次側時之等溫差冰水系統較耗能;如採不等溫差冰水系統,使一次側冰水流量略大於或等於二次側時,可改善等溫差冰水系統一次側冰水流量小於二次側運轉時之耗能情況,節能比率預期可達6.3﹪。 綜合比較水側系統模擬結果,最佳運轉模式採不等溫差冰水系統配合二次/加壓水泵系統最省能,相較於其他系統預期最佳節能比率達8.5﹪;利用本文所述之耗能分析,提供新建工程之設計或既有工程改善的參考依據。

並列摘要


The purpose of this research is to apply the district cooling system in the block-type buildings as a research model that uses primary/ secondary piping system application in this HVAC system. Simulate three kinds of processes for chilling water system running modes in sub-piping systems respectively. Furthermore, we utilize the computerizing analysis for several types of running modes on power consumption analysis in this system and to get the comparisons of total energy usage efficiency of those chilling piping systems. The results from computerizing analysis show that the secondary chiller water supply, the common-used secondary chiller pump system performs worse power efficiency, region-divided secondary chiller pump system has the second best performance, the power saving reach to 36.2% and the secondary / boost water pump system has the best power efficiency performance, the power saving reach to 42.6%. The result of running mode of primary chiller water system shows, the power saving will be the best system when primary / secondary piping systems with the same water flow by equal temperature system, but it is very idealism; and it will consume more power consumption when under equal temperature system but chiller water flow of primary less than secondary one, if we take different temperature of chiller water system, make the primary chiller water flow a little bit more or the same as secondary, it can be improved the power consumption situation, and the saving reach to 6.3%. To sum up the comparisons, the best power saving running mode is to use different temperatures of chiller water system combines with secondary / boost water pump system, compared with other systems, the power saving will reach to 8.5%. We hope that this research of power consumption analysis can be provided as the reference basis for improving current systems or new developing projects.

參考文獻


[10]雷芳信,「半導體廠冰水機節能控制」,中國冷凍空調雜誌,1996年8月,第146-152頁。
[11]Gil Avery, P.E Fellow ASHRAE “Improving the Efficiency of Chilled Water Plants”, ASHRAE Journal, pp. 14-18, May. 2001.
[8]T. T. Chow, W. H. Au, R. Yau, V. Cheng, A. Chan, and K. F. Fong, Applying district-cooling technology in Hong Kong, Applied Energy 79, pp. 275-289, March. 2004.
[9]Donald M. Eppelheimer, P.E. Variable Flow-The Quest for System Energy Efficiency, ASHRAE Transactions, 1999.
[12]Kirby P. Nelson, “Dynamics of primary/secondary chilled water systems”, ASHRAE Transactions, Vol. 105, Part. 2, 1999.

被引用紀錄


蘇鴻昌(2008)。大型建築區域冷房冰水系統規劃與節能研究〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2008.00021
林昱承(2013)。面板廠空調與空壓機設備節能研究〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-1506201301075700
葉雲翔(2014)。小型空調系統能源管理行為效益分析─以大學校院為例〔碩士論文,國立中央大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0031-0412201511584990

延伸閱讀