本論文首先以理論推導濃度與最佳激發光波長的關係式,再分別以NADH、羅丹明6G、量子點三種螢光物質實際驗證其理論,實驗得到當螢光物質濃度升高,最佳激發光的波長會往長波長偏移。 利用OptiFDTD軟體,設定奈米金粒子為5 nm,與螢光450 nm及490 nm量子點進行模擬,藉由改變粒子間距找出兩種不同量子點電場分布及電場最強之距離。根據模擬結果,螢光450 nm的量子點電場最強位於與奈米金粒子距離30 nm處;螢光490 nm的量子點電場最強位於與奈米金粒子距離40 nm處。 實際以實驗將量子點與奈米金粒子進行混合,由X膠做為Spacer,與未加Spacer及金粒子490 nm量子點螢光增強11.3倍,而450 nm量子點無局域表面電漿子共振螢光增強現象,螢光減弱。由改變金粒子濃度及溫度,得知Spacer厚度為30 nm,而490 nm量子點在5 uL及40°C時螢光最強。
In this paper, we find the fluorescent substance in various concentrations corresponding to the excitation wavelength. When the concentration is increased, the optimal excitation wavelength will shift to longer wavelengths. The use of simulation software to find the distance between the electric field distribution of nanoparticles. The quantum dots added gold nanoparticles as spacer, quantum dot fluorescence intensity increased 11 times. gold particles by varying the concentration and temperature, that Spacer thickness of 30 nm, and 490 nm quantum dots in 5 uL and 40 ° C when the fluorescent strongest.