透過您的圖書館登入
IP:13.59.218.147
  • 學位論文

利用環氧樹脂合成超分枝高分子及其性質之研究

Synthesis of Hyperbranched Polymers from Epoxy resin, and Characteristic Comparison

指導教授 : 鄭國忠

摘要


本實驗使用兩種雙官能基環氧樹脂:雙酚型(DGEBA type)環氧樹脂(D.E.R.332,A2)和聯苯環氧樹脂(tetramethyl biphenyl epoxy resin,TMBP,A2),添加入單官能基罩蓋劑苯基環氧丙基醚(phenyl glycidyl ether,PGE,AR),再與多官能基胺化合物氨苯磺醯胺(sulfanilamide,SAA,B4),超分枝高分子可經由總體聚合法可成功製備出,發現其分子量為Mw=4786~9841,Mn=2385~3332。在本實驗中發現提高PGE的莫耳比時所合成出的超分枝高分子的分子量會降低。進一步利用錐板-平板流變儀測量高分子的流變行為,發現超分枝高分子的黏度會隨著分子量增加而增加。在SAA與D.E.R.332系統合成之超分枝高分子中,其Tg約為53~70℃,當Mw= 5998在溫度120℃時,黏度為12.4 Pa•s;而在SAA與TMBP系統合成之超分枝高分子中,其Tg約為51~62℃,當Mw= 4786在溫度120℃時,黏度為9.5 Pa•s。經由TGA觀察其5% wt. loss初始裂解溫度均超過300℃,耐熱穩定性良好,預期可作為高分子流變性改質劑。

並列摘要


In this study, hyperbranched polymers (HBPs) were synthesized via a bulk polymerization of multifunctional monomer sulfanilamide, SAA, and phenyl glycidyl ether, PGE, with addition different epoxy resin: diglycidyl ether of bisphenol A (DGEBA) type epoxy resin, D.E.R. 332 and tetramethyl biphenyl epoxy resin (TMBP), 1407, to synthesize SAA-D and SAA-T two type of HBPs. We can synthesize HBPs of Mw=4786~9841, Mn=2385~3332. Increasing the molar ratio of PGE in reaction decreases the molecular weight. Rheological behavior of the HBPs was measured by a cone-plate rheometer. It was found that the viscosity of HBPs increases with increasing molecular weight. At 120℃, and Mw=5998, the viscosity of HBPs prepared by SAA-D system is 12.4 Pa•s. In other hand, at 120℃, and Mw= 4786, the viscosity of HBPs prepared by SAA-T system is 9.5 Pa•s. The Tg’s of the HBPs synthesized from SAA-D system is about 53~70℃, and Tg of SAA-T system is about 51~62℃. The glass transition temperatures of the HBPs are about 53-70℃, which increases with the molecular weight of polymers.

參考文獻


[3] John Scheirs, Dendrimers and Other Dendritic Polymers, Wiley Series in Polymer Science, Great Britain(2001), p.14-16.
[5] C. Gao and D. Yan, "Hyperbranched polymers: From synthesis to applications, " Prog. Polym. Sci, vol.29, 2004, pp. 183.
[6] B. Voit, "New developments in hyperbranched polymers," J. of Polym. Sci. Part A: Polym. Chem. vol.38, 2000, pp. 2505.
[7] H. K. Young, "Hyperbranched polymers 10 years after," J. of Polym. Sci. Part A: Polym. Chem. vol.36, 2000, pp. 1685.
[8] H. Liu, J. H. Nasman, M. Skrifvars, "Radical alternating copolymerization: A strategy for hyperbranched materials," J. of Polym. Sci. Part A: Polym. Chem. vol.38, 2000, pp. 3074.

被引用紀錄


陳炯達(2012)。樹枝狀水性PU壓克力樹脂之合成、物性探討與光硬化動力學分析〔博士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2012.00641
蔡仲倫(2010)。樹枝狀水性PU壓克力樹脂之光硬化動力學與機械性質探討〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2010.00446
王嘉淳(2010)。分枝狀聚氧化乙烯鋰電解質之製備及特性分析〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-2207201016403500
陳建帆(2010)。樹枝狀光硬化水性 PU壓克力樹脂合成與物性探討〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-2801201018174400
羅少軒(2011)。分枝狀聚氧化乙烯鋰電解質之流變性質〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-2007201115253300

延伸閱讀