本論文重點是設計一顆以模糊理論來改良直接轉矩控制架構的三相感應馬達驅動晶片,使用Verilog硬體描述語言來撰寫硬體架構,並以數位IC元件庫設計模式的設計流程來完成此顆晶片。馬達系統的基本原理為經由偵測馬達三相電壓、電流與轉子轉速來計算出馬達的磁通量與轉矩量,經過磁通、轉矩誤差和模糊向量選擇表與座標轉換電路來得到適當的電壓向量來切換變頻器功率電晶體,以獲得穩定的馬達速度響應;而使用模糊控制器與模糊向量選擇表,則可以減少傳統直接轉矩控制的轉矩、磁通響應漣波過大的缺點,並且改善速度響應使系統更穩定。 我們運用硬體描述語言撰寫出系統的運作模式,並確認語法與功能正確無誤後,藉由台積電TSMC0.18μm製程的元件庫與Synopsys和Cadence公司所提供的最佳化軟體來完成電路合成、自動佈局繞線與驗證等晶片開發程序,最後完成整個三相感應交流馬達模糊控制晶片的設計與製作。
The thesis is to design a direct torque control (DTC) IC based on fuzzy theory to decrease the variations of torque and flux. Verilog hardware description language (HDL) is used to implement the hardware architecture; and that an ASIC is implemented with the TSMC 0.18μm technology. Generally, the motor control system firstly calculates the stator’s magnetic flux and torque by detecting the three-phase current, three-phase voltage and the rotor speed, of the induced motor. By using the torque error, magnetic error, fuzzy vector selection table and coordinate transform circuit, a suitable voltage space vector can be obtained to control the switch of MOSFET in inverter and to have a stable response in motor speed. Furthermore, the fuzzy controller and fuzzy vector selection table is used to establish an appropriate voltage vector switch table. It fully takes the advantage of digital IC which has both optimal operating speed and good stability. After confirming the syntax and function, the control system is verified with the synthesis tool, the auto place & routed, and the function simulation tool. Finally, an IC is fabricated in 0.18μm 1P6M CMOS process for three-phase induction motor control system.