透過您的圖書館登入
IP:3.14.6.194
  • 學位論文

利用金屬輔助蝕刻製作奈米孔洞在矽薄膜太陽能電池表面之研究

Performance Characterization of Si Thin-Film Solar Cells Using Nanopores Surface Structure on the Emitter Layer by Metal-Assisted Chemical Etching

指導教授 : 何文章
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文利用金屬輔助蝕刻法(Metal-Assisted Chemical Etching, MACE)製作奈米孔洞(nanopores)次波長結構在矽薄膜太陽能電池上,以及在表面覆蓋不同厚度TiO2鈍化層,分析矽薄膜太陽能電池的光電特性變化。本實驗使用CVD在n+的矽(Si)基板上成長5 um n--Si及0.87 um p+-Si 的矽薄膜太陽能電池磊晶層;在清潔磊晶片試片表面後,我們利用E-beam蒸鍍20 nm銀膜於磊晶片試片表面上,並經過300℃及5 min的RTA退火,然後以金屬輔助蝕刻液將試片表面進行蝕刻,其中銀金屬奈米粒子具選擇性蝕刻矽之特性,以不同蝕刻時間可製作出不同孔洞深度的矽奈米孔洞。然後在試片正面鍍上鋁及背面鍍上鈦/鋁,經450℃及5 min的退火處理形成金屬電極,完成裸電池製作。 經SEM確認矽表面奈米孔洞狀態與深度後,我們並對電池進行光反射率、暗電流、光電流、EQE等量測。當孔洞蝕刻30秒時,我們可以製作出電池表面在波長350 nm至1050 nm寬波段低於2.5%的反射率。而蝕刻10秒時,電池之轉換效率最高提升率約43% (從5.64 %至8.07 %)。隨蝕刻時間上升從0秒至30秒觀察EQE的變化,電池EQE短波長的截止點會從375 nm移至420 nm左右。 最後我們蒸鍍不同厚度TiO2鈍化層在具矽奈米孔洞的矽薄膜太陽能電池上,以降低其表面載子複合及提高光電流。經暗電流量測,能夠得知不同蝕刻時間的電池在鍍上TiO2後,其n與I0值都會因有TiO2表面鈍化抑制表面複合速率而下降,I0下降則能夠提升電池的開路電壓。經比較未鍍上與鍍上45 nm TiO2之電池,其 n值約從1.83下降至1.58,I0約從2.0×10-8 A下降至2.5×10-9 A左右。且蝕刻時間為0、1、5秒之試片由於孔洞蝕刻較淺,TiO2較易覆蓋電池表面,使得其暗電流特性較優於蝕刻10秒以上的電池。而經光反射率量測後分析比較: (1)在平面與蝕刻1秒的太陽能電池,表面蒸鍍 TiO2薄膜時,其反射率會隨TiO2厚度增加而下降,類似單層抗反射層的性質; (2)在蝕刻時間為5、10、15、30秒的電池上鍍15 nm TiO2之後反射率也會稍微下降;但當蒸鍍薄膜厚度45 nm時,在350 nm至650 nm短波長反射率則會大幅提高;這是由於表面薄膜厚度太厚,使光在尚未受到孔洞抗反射效果就在薄膜表面被反射掉,以及電池表面的粗糙化,破壞單層抗反射層的光波動特性所造成的。 經EQE及照光電流量測分析: (1)EQE與電池表面反射率有直接關聯,當反射率下降時則EQE提升,反之亦同。(2)從EQE的結果中,我們可以得知平面裸電池與蝕刻1s的電池於表面覆蓋TiO2後,EQE在短中波長(400 nm至 600 nm)的提升最明顯,而蝕刻 5s、10s、15s、30s的電池,則在中長波長(650 nm至1050 nm)提升效果最佳。最後我們利用蝕刻15秒的矽奈米孔洞與表面覆蓋厚度30 nm TiO2,利用孔洞次波長結構的光捕捉及鈍化層降低電池表面載子複合之最佳化,可以使電池效率提升約73.2% (從5.64% 提升至9.77%)。與平面裸電池單純覆蓋一層30 nm TiO2後(效率為7.9%)比較,有奈米孔洞的太陽能電池相較於無奈米孔洞電池之效率提升了33.2%,其主要貢獻來自奈米孔洞的光捕捉提升及電池表面載子複合的抑制。

並列摘要


In this work, the optical and electric properties of silicon thin film solar cell with the nanopores subwavelength structures using metal-assisted chemical etching (MACE) and various TiO2 passivation layers are studied. The experiment is first prepared silicon thin film solar cell, The epitaxial layer consisted of a 5-um N--Si base layer and a 0.87 um P+-Si emitter layer grown on N+-Si substrated by chemical vapor deposition (CVD) system. After cleaning, a 20 nm silver film was deposited on the cells surface by E-beam evaporation and annealed at 300 ℃, 5 min on RTA chamber. Then, the nanopores surface structure on the emitter layer was created by using MACE processing under different etching time. Using SEM images to examine the nanopores state and depth on silicon surface, the optical reflectance, dark and photo I-V, EQE were measured and compared. The reflectance of the fabricated 30s MACE time solar cell is less than 2.5% at 350 – 1050 nm wavelength. The maximum conversion efficiency enhancement of approximately 43% (from 5.64 to 8.07%) was obtained for cell with 10s MACE time, the EQE cutoff point at short wavelength band are exhibited a red shifted (from 375 to 420 nm) when the MACE time increased. Finally, different thickness of the TiO2 passivation layer were deposited on the nanopores of the silicon thin film solar cells, in order to reduce its surface carrier recombination and increase the photocurrent. Dark I-V measurement shows that the idealily factory (n) and saturation current (I0) will reduce with TiO2 the thinkness of incresing. For reflectivity measured, the results are: (1) For bare cell and the Cell with 1s MACE time, the reflectance decreases with the thickness of TiO2 increased, like to a single anti-reflective layer on a device. (2) For MACE time of 5, 10, 15, 30 seconds, the reflectivity decreases when a 15 nm TiO2 deposited; the reflectance will increase when the film thickness of 45 nm TiO2 deposited, particullary at 350 to 650 nm wavelength. For EQE and photonvoltaic I-V measurement, the results are: (1) EQE increases with reflectivity decreased. (2) EQE enhance at short wavelength for bare cell and cell with MACE time of 1s was obtained, when the cell deposited TiO2 layer. However, EQE enhanced at long wavelength for cell with MACE time of 5s、10s、15s、30s. Finally, we demonstrated a thin-film Si solar cell with MACE time of 15s and 30 nm TiO2, having the efficiency enhancement of approximately 73.2 % (from 5.64 to 9.77%).

參考文獻


[5] 黃文賢,“以奈米材料技術發展第三代高效率薄膜太陽能電池”,國家奈米元件實驗室-奈米通訊, 17卷,2010年。
[8] 周力行,“金屬離子輔助蝕刻法製備奈米線陣列在N型矽晶太陽能電池之應用”,碩士論文,國立臺灣大學,2012年。
[9] 黃楷庭,“次波長微結構在表面電漿元件及太陽能電池應用之研究”,碩士論文,國立臺灣大學,2006年。
[10] 劉建惟,“矽奈米線薄膜太陽能電池之研製”,國家奈米元件實驗室-奈米通訊,16卷,2009年。
[14] 邱泓瑜,“高穩定性及高效率矽薄膜太陽能電池”,碩士論文,國立交通大學,2010年。

延伸閱讀