透過您的圖書館登入
IP:3.145.191.214
  • 學位論文

使用脈波寬度調變技術之寬輸出範圍飛馳電容式降升壓轉換器研製

Design and Implementation of Flying-Capacitor Buck-Boost Converter with Wide Output Range utilizing PWM Technique

指導教授 : 陳建中 黃育賢
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文的第一個部份提出脈波寬度調變技術之寬輸出範圍飛馳電容式降升壓轉換器,以改善傳統型切換式電容轉換器之效率。此改良型轉換器兼具快速暫態響應和非脈動輸出電流特性,並能降低輸出電壓漣波和輸出電容的額定電流應力;當輸入電源電壓為3.3V,此轉換器可精確提供輸出電壓範圍從1V到4.5V,且最高切換頻率為1 MHz,量測最高效率為90%。電路使用台積電0.35-μm互補式金氧半製程來實現,晶片面積為2.308 × 2.24 mm2(包含封裝晶片接腳)。 本論文第二部份為虛擬電流技術之快速寬輸出飛馳電容式降升壓轉換器。此改良型架構以虛擬電流技術使降升轉換器在輕重載變化時,輸出能具有較快速的暫態響應。當輸入電源電壓為3.3V,此降升壓轉換器可精確提供輸出電壓範圍從1V到4.5V,切換頻率為1 MHz;實驗結果顯示當負載電流變化200 mA時暫態響應小於2 μs,最高效率為89.66%。電路使用台積電0.35-μm互補式金氧半製程來實現,晶片面積為1.5 × 1.5 mm2 (包含封裝晶片接腳)。

並列摘要


The first part of this thesis is a flying-capacitor buck-boost converter with wide output range has been proposed to improve efficiency of conventional switched-capacitor converter. The proposed converter has the properties of fast response and the non-pulsating output current, which can reduce both of output voltage ripple and current stress requirement of the output capacitor. The proposed structure utilized pulse-width-modulation technique. The proposed converter can supply an output voltage with wide range which is from 1.0V to 4.5V in high accuracy when supply voltage is 3.3V. The max switching frequency of the proposed converter is 1 MHz. Experimental results proved that the proposed scheme improves the power efficiency up to 90%. The proposed buck-boost converter has been fabricated with TSMC 0.35-μm CMOS 2P4M process, the total chip area is 2.308 × 2.24 mm2 (with PADs). The second part of this thesis introduces the design of fast transient response flying-capacitor buck-boost converter with wide output range utilizing pseudo-current mode techniques. The proposed structure utilized pseudo-current mode technique to achieve fast transient response when load current changes between heavy load and light load. The switching frequency of the proposed buck-boost converter is 1 MHz for supply voltage is 3.3V and output range is from 1.0V to 4.5V. Experimental results prove that the proposed scheme improves the transient response is within 2 μs and the power efficiency up to 89.66%. The proposed buck-boost converter has been fabricated with TSMC 0.35-μm CMOS 2P4M process, the total chip area is about 1.5 × 1.5 mm2 (with PADs).

參考文獻


[2] C. F. Lee and P. K. T. Mok, “A monolithic current-mode CMOS DC-DC converter with on-chip current-sensing technique,” IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 3–14, Jan. 2004.
[3] Y. S. Hwang, M. S. Lin, B. H. Hwang, and J. J. Chen, “A 0.35μm CMOS sub-1V low-quiescent-current low-dropout regulator,” in Proc. ASSCC 2008, Nov. 2008, pp. 153-156.
[4] P. C. Huang, W. Q. Wu, H. H. Ho, and K. H. Chen, “Hybrid buck–boost feedforward and reduced average inductor current techniques in fast line transient and high-efficiency buck–boost converter,” IEEE Trans. Power Electronics, vol. 25, no. 3, pp. 719-730, Mar. 2010.
[5] K. I. Hwu and Y. T. Yau,” A novel voltage-bucking/boosting Converter: KY buck-boost converter,” in Proc. IEEE ICIT, Apr. 2008. pp. 1-4.
[6] 林明憲,低功率CMOS電壓調整器之研製,國立臺北科技大學,電腦與通訊研究所,碩士論文,臺北,2010。

被引用紀錄


張哲源(2014)。平板電腦基座電源佈局與訊號切換時機之硬體設計〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-0108201400295400
施榮練(2014)。使用磁滯控制與效率增強技術之快速暫態響應高效率電荷幫浦升壓轉換器〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-0808201421514100

延伸閱讀