透過您的圖書館登入
IP:216.73.216.60
  • 學位論文

無線能量轉換之低損耗前端整流器研製

Design and Implementation of Low-loss Front-end Rectifier for Wireless Energy Transfer

指導教授 : 黃育賢 陳建中
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


在本論文,我們主要研究於前端整流器電路。本射頻整流器採用了降低逆損耗技術並應用於13.56 MHz頻帶之下,透過持續偵測在射頻整流器輸入與輸出的能量位階,進而控制開關導通與否予以降低逆向損耗,因此,與使用其他技術的射頻整流器比較之,此技術可以增進射頻整流器的功率轉換效率。本射頻整流器也可以使用電荷幫浦之技術,藉由疊接方式來提升電壓位準,所以本射頻整流器不僅適用於升壓型前端整流器,也可適用在幫浦型前端整流器。本提出的升壓型前端整流器由一射頻整流器以及一升壓轉換器組成,將射頻訊號轉換成直流訊號可提供能量給遙測系統使用,在此射頻整流器使用降低逆損耗技術,另在所提出的升壓轉換器的部分,電感電流被操作在不連續導通模式,並且,電感上殘餘能量被監測進而來調整主要開關的導通時間,經由上述方式來提升此升壓型前端整流器的效率。此使用降低逆損耗技術射頻整流器晶片與升壓型前端整流器晶片以台積電0.18 μm 1P6M製程來實現,晶片面積不包含PADs分別為0.324 × 0.404 mm2與0.205 × 0.266 mm2。

並列摘要


In this thesis, our main research is front-end rectifier circuit. The RF-DC rectifier adopts reducing reverse loss technique at 13.56 MHz band. Therefore, by continuously detecting the input and output power level to turn the switches on/off, the reverse loss is decreased. Comparing with others, the technique can improve power conversion efficiency of the RF-DC rectifier. The RF-DC rectifier can also use charge pumping technique which raises voltage level by stack method. Consequently, not only boost-type front-end rectifier but also pump-type front-end rectifier can adopt the proposed RF-DC rectifier. The proposed boost-type front-end rectifier is composed of a RF-DC rectifier and a boost converter. Transforming RF signal into DC signal provides power to wireless telemetry system. The proposed RF-DC rectifier uses the reducing reverse loss technique. In the proposed boost converter of the proposed circuit, the inductor current is operated in discontinuous-conduction mode. Moreover, turning on time of the principal switch is adjusted by the remnant energy of the inductor is monitored. The efficiency of the proposed boost-type front-end rectifier is enhanced by the foregoing methods. The chips of RF-DC rectifier with the reducing reverse loss technique and boost-type front-end rectifier are implemented with TSMC 0.18μm CMOS 1P6M process. The area of chips without PADs are 0.324 × 0.404 mm2 and 0.205 × 0.266 mm2, respectively.

參考文獻


[1] A. S. Bakhtiar, M. S. Jalai, and S. Mirabbasi, “A high-efficiency CMOS rectifier for low-power RFID tags,” in IEEE International Conference on RFID, Apr. 2010, pp. 83-88.
[2] B. Nilsson, L. Bengtsson, and B. Svensson, “An application dependent medium access protocol for active RFID using dynamic tuning of the back-off algorithm,” in IEEE International Conference on RFID, Apr. 2009, pp. 72-79.
[3] T. Umeda, H.Yoshida, S. Sekine, Y. Fujita, T. Suzuki, and S. Otaka, “A 950-MHz rectifier circuit for sensor network tags with 10-m distance,” IEEE J. Solid-State Circuits, vol. 41, no. 1, pp. 35-41, Jan. 2006.
[4] A. Costanzo, M. Fabiani, A. Romani, D. Masotti and, V. Rizzoli, “Co-design of ultra-low power RF/Microwave receivers and converters for RFID and energy harvesting applications,” in IEEE MTT-S IMS Dig., May 2010, pp. 856-859.
[5] M. Usami, A. Sato, K. Sameshima, K. Watanabe, H. Yoshigi, and R. Imura, “Powder LSI: an ultra small RF identification chip for individual recognition applications,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2003, pp. 398-399.

被引用紀錄


吳擇序(2013)。具有限流功能之交流-直流鋰電池充電器與使用自動頻率選擇及鎖定技術之高效率遲滯降壓轉換器〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-1608201321440700
賴柏翰(2014)。具有快速暫態響應和低電磁干擾 升壓轉換器設計〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-1108201413283400

延伸閱讀