透過您的圖書館登入
IP:18.220.59.69
  • 學位論文

疊接電感降壓轉換器與無差拍動態斜率補償技術之降壓轉換器設計

Design and Implementation of Buck Converters using Stack Inductor and Dead-Beat Control with Dynamic Ramp Compensation

指導教授 : 陳建中
共同指導教授 : 黃育賢(Yuh-Shyan Hwang)
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文分兩部分,第一部分為使用CMOS製程疊接電感之直流-直流降壓式轉換器,整體控制為電壓模式控制,在設計上將電路操作頻率提高至MHZ使被動元件-電感能縮小至nH的大小實現於晶片中,而為了讓降壓轉換器能提供較大的輸出電流,電感以M3-M6四層金屬疊接,使電感內阻降低能承受較大的電流。電路使用台積電0.18-μm互補式金氧半製程來實現。量測結果顯示,此轉換器負載電流輕重載18mA-180mA相互轉換時,其暫態響應時間約4μs,在負載電流250mA時,最高效率為65.66%。 第二部分提出新型無差拍控制與動態斜率補償技術之直流-直流降壓式轉換器,使用台積電0.18-μm互補式金氧半製程來實現。在電流控制模式的降壓式轉換器中,加入了動態斜率補償與無差拍控制技術,讓降壓式轉換器能提供寬廣的輸出電壓範圍0.5V到1.3V,在能提供穩定輸出的同時也兼具快速的暫態響應。此降壓轉換器負載電流由輕載50mA轉為重載500mA與重載500mA轉為輕載50mA時,由量測結果其暫態響應時間分別為2μs與3μs,並於負載電流300mA時,達到最高效率89.68%。

並列摘要


There are two parts of this paper, the first part introduced a fully integrated dc-dc buck converter with stack inductor on CMOS process. The whole control loop based on voltage-mode control. In this design, the switching frequency was designed to MHz so that inductor size can reduce to nH, and implement the inductor on education chip area. In order to provide higher output current, the inductor of buck converter was implemented by stack metal M3-M6 to get lower internal equivalent resistor and higher current tolerance. The proposed buck converter was fabricated by TSMC 0.18μm 1P6M CMOS process. Measured results of transient response recovery time is 4μs with the load current skipping between 18mA and 180mA, and peak efficiency of 65.66% is obtained at 250mA load current.   The next part proposed a new DC-DC buck converter with dead-beat control and dynamic-ramp compensation techniques. The chip was fabricated by TSMC 0.18μm 1P6M CMOS process. The main topology of converter was based on current-mode control. In this research we add the dynamic-ramp compensation and dead-beat control technology, ameliorating the stability and transient response of traditional current-mode control. In this design, converter can provide wide output range from 0.5V to 1.3V and fast transient response. Measured results of transient response recovery time is 2μs and 3μs with the load current skipping between 50mA and 500mA, and peak efficiency of 89.68% which is obtained at 300mA load current.

參考文獻


[21]趙大瑋,使用三角積分調變器之降壓型轉換器研製,碩士論文,國立台北科技大學 電腦與 通訊研究所,台北, 2012。
[1]D. Aidin, and J. Voix, “Energy harvesting for in-ear devices using ear canal dynamic motion,” IEEE Trans. Power Electron, vol.61, no.1, pp. 583-590, Jan, 2014.
[2]D. D. Donno, L. Catarinucci and L. Tarricone, “An uhf rfid energy-harvesting system enhanced by a DC-DC charge pump in silicon-on-insulator technology,” IEEE Microwave and Wireless Components Letters, vol.23, no.6, pp. 317-317, June, 2013.
[3]T. Le, K. Mayaram and T. Fiez, “Efficient far-field radio frequency energy harvesting for passively powered sensor networks,” IEEE J. Solid-State Circuits, vol. 43, no. 5, pp. 1287–1302, May 2008.
[4]Y. S. Hwang, M. S. Lin, B. H. Hwang and J. J. Chen, “A 0.35μm CMOS sub-1V low-quiescent-current low-dropout regulator,” Proc. ASSCC 2008, Nov. 2008, pp. 153-156.

延伸閱讀