透過您的圖書館登入
IP:18.223.159.195
  • 學位論文

非導電流體之兩相噴擊冷卻實驗研究

An Experimental Study of Two Phase Multiple Jet Cooling Using a Dielectric Fluid

指導教授 : 簡良翰

摘要


近年來科技的進步,使得運算晶片密集度越來越高,並產生大量的熱能,因此需要一高效率的散熱系統。本研究以非導電流體FC-72做為工作流體,探討噴擊冷卻之晶片散熱性能。實驗之散熱器系統溫度設為50℃,滴淋分配盤有五個或九個0.24 mm的滴淋孔,距離測試表面5 mm,加熱面積12×12 mm2。測試表面有光滑表面,鰭片高、寬與鰭片間距均為400μm的針狀與槽道表面,鰭片高800μm、鰭片寬與鰭片間距均為200μm的針狀與槽道表面。滴淋方向分為垂直滴淋與側邊滴淋,流量為50 ~ 100 ml/min。實驗結果得知增加流量可提升熱傳性能,垂直滴淋的性能較側邊滴淋高,而利用鰭片增加散熱表面積也有顯著效果。各表面中以鰭片高800μm、鰭片寬與鰭片間距均為200μm的針狀表面之性能最佳,在流量為150 ml/min時較光滑表面增加約250 %。此針狀表面在本研究之滴淋散熱器以150 ml/min流量運作時,加熱量8.91 ~ 121.61 W之流體與加熱面平均熱阻僅0.161 K/W,適合用於實際電腦散熱裝置。

並列摘要


Recent advancing technologies have caused the computer chips development toward increasing densities of circuits, and increasing heat dissipation. Therefore, an effective cooling system is required for computer chips. This study uses dielectric fluid FC-72 as the working fluid in a jet cooling device. In the present experiment, the system temperature of jet cooling device is set at 50℃. The fluid distributor plate has 5 or 9 pores of 0.24 mm diameter. The distance from distributor plate to the test surface was 5 mm, and the heated area of the test surface is 12×12 mm2. The test surfaces include: a smooth surface, a pin-fin surface and a straight fin surfaces of 400μm fin height, thickness and gap width, a pin-fin surface and a straight fin surface of 800μm fin height, 200μm fin thickness and gap width. The flow direction of jet impingement includes downward and sideward, and the volume flow rate varies from 50 to 150 ml/min. The result shows that increasing flow rate can increase heat transfer performance. The heat transfer performance of downward jet cooling is greater than that of sideward jet cooling. The pin fin surface of 800μm fin height ,200μm fin thickness and gap width yields the best performance, which is about 250 % greater than the smooth surface at 150 ml/min. The average thermal resistance of this pin fin surface is 0.161 K/W at 8.91 ~ 121.61 W of heat input when the present jet cooling system operates at 150 ml/min. This jet cooling device is found to be a promising chip cooling solution for its low thermal resistance.

參考文獻


[10] 吳東旅、簡良翰,「鰭片表面應用於滴淋蒸發式電子散熱系統之研究」,國立臺北科技大學能源系碩士論文,民97。
[3] B. Horacek, J. Kim, and K. T. Kiger, 2004, “Spray cooling using multiple nozzles: Visualization and wall heat transfer measurements,” IEEE Transactions on Device and Materials Reliability, Vol. 4, pp. 614-625.
[4] A.G. Pautsch, and T.A. Shedd, 2005, “Spray impingement cooling with single- and multiple-nozzle arrays. Part I: Heat transfer data using FC-72,” International Journal of Heat Transfer, Vol.48, pp. 3167-3175.
[5] B.P. Whelan, and A.J. Robinson, 2007, “The effect of nozzle geometry on pressure drop and heat transfer to free surface liquid jet arrays,” 2007 Proceedings of the ASME/JSME Thermal Engineering Summer Heat Transfer Conference, HT 2007 ,Vol. 2, pp. 747-756.
[6] E.A. Silk, J. Kim, and K. Kiger, 2006, “Spray cooling of enhanced surfaces: Impact of structured surface geometry and spray axis inclination,” International Journal of Heat and Mass Transfer, Vol. 49, pp. 4910-4920.

被引用紀錄


陳正裕(2013)。多噴嘴微鰭片流道晶片散熱器之實驗與數值模擬研究〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2013.00648
劉瀚陽(2011)。整合噴嘴之微渠道散熱器於晶片冷卻之研究〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2011.00210
廖紹宇(2012)。多噴嘴微流道晶片散熱器之噴嘴孔徑組合研究〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-1608201215451000

延伸閱讀