透過您的圖書館登入
IP:3.128.199.210
  • 學位論文

多噴嘴微鰭片流道晶片散熱器之實驗與數值模擬研究

An Experimental and Numerical Study of Micro-fin Channels with Multiple Jets for Chip Cooling

指導教授 : 簡良翰

摘要


本研究針對整合噴擊與微流道之混合性散熱機構,散熱器裡設計有數組噴嘴與微流道和微鰭片整合為一體成型之散熱機構。在投影面積為12×12mm2的散熱器,建立流道高0.8mm,寬0.6mm,流道長度為12mm,共計11條微渠道,每條微渠道中設置微鰭片,微鰭片高0.3mm,寬0.2mm長度12mm,微鰭片上方正對著3個噴擊孔,因此微渠道的體積減少約12.5%。本研究實驗工作流體為FC-72,入口飽和溫度為30℃及50℃,並設定噴擊流量為100~710mL/min。結果發現,單相熱傳之熱傳性能皆會隨著噴擊流量增大而呈現線性上升之趨勢,在微渠道中增加微鰭片,有助於熱傳進入兩相沸騰熱傳,而當流量增至一定範圍以上時,因為噴擊到微鰭片壓力過大,使得工作流體在微渠道內部未能有較佳的相變化熱傳,使得熱傳性能下降,本研究在飽和溫度30℃時,中流量450mL/min下,可達最高的熱通量150 W/cm2,並有本實驗中最低的熱阻0.1313K/W。最後,利用迴歸及疊代計算,推導出單相和雙相熱傳的經驗公式,其誤差範圍絕大部分落在±20%和±30%以內。

並列摘要


This study investigate a micro-channel heat sink integrated with micro jets. The cooling fluid was introduced to a 12×12 mm2 heated surface, which had 11 micro-channels, each channel was 0.8 mm high, 0.6 mm wide, and 12 mm in length. Micro-fin of 0.3mm height, 0.2mm width, and 12mm in length is made on the bottom of each channel.The volume of micro-channels reduces approximately 12.5% by the micro-fins. In the tests, the working fluid is FC-72, the saturation temperature of cooling device system was set at 30 and 50℃, and the volume flow rate varied from 100 to 710 ml/min. The experimental results showed that heat transfer performance increased with increasing flow rate for single phase heat transfer. The micro fins enhances the heat transfer in two phase boiling heat transfer. However, for the flow rate greater than a certain value, the increase of pressure drop hinders the bubble formation, and results in heat transfer performance degradation. In this study, at the saturation temperature of 30 ℃, and the flow rate of 450mL/min , the heat sink yields the maximum heat flux of 210 W/cm2, and the lowest thermal resistance of 0.1313K / W. Single phase and two phase heat transfer empirical correlations have been developed for the present heat sink, and the prediction error for most data are within ± 20% and± 30%, respectively.

參考文獻


[23] 吳東旅、簡良翰,「鰭片表面應用於滴淋蒸發式電子散熱系統之研究」,碩士論文,國立臺北科技大學能源系,台北,2008。
[24] 張秦耀、簡良翰,「非導電流體之兩相噴擊冷卻實驗研究」,碩士論文,國立臺北科技大學能源系,台北,2009。
[26] 李書哲、簡良翰,「非導電性流體之噴擊式與池沸騰式晶片冷卻研究」,博士論文,國立臺北科技大學能源系,台北,2010。
[1] ASHRAE Handbook-Applications, “Data Processing and Electronic Office Areas”, Ch17, 2007.
[2] B.Q. Li, T. Cader, J. Schwarzkopf, K. Okamoto, and B. Ramaprian, 2006, “Spray angle effect during spray cooling of microelectronics: Experimental measurements and comparison with inverse calculations,” Applide Thermal Engineering, Vol. 26, pp. 1788-1795.

被引用紀錄


楊璥光(2014)。噴擊冷卻三維鰭片流道應用於晶片散熱之模擬與實驗研究〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2014.00261

延伸閱讀