透過您的圖書館登入
IP:18.224.44.108
  • 學位論文

以微波電漿束成長奈米碳管與氧化鋅複合元件之特性及應用研究

Characterizations and Applications of Zinc Oxide/Carbon Nanotubes Devices Using Microwave Plasma Jet Chemical Vapor Deposition System

指導教授 : 蘇春熺
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究建立一微波電漿束化學氣相沉積(Microwave Plasma Jet Chemical Vapor Deposition, MPJCVD) 系統,能即時監測微波功率、溫度、壓力、氣體流量及波導管位置,使其運用於微波燒結(Microwave Sinter)、微波電漿燒結(Microwave plasma sinter)及微波電漿化學氣相沉積(Microwave Plasma Chemical Vapor Deposition)等,並輔以電腦模擬獲得其試片處之電磁場與熱場分佈情況而提高製程重現性。 以微波電漿束成長奈米碳管於氧化鋅之特性,以掃瞄式電子顯微鏡(FE-SEM)、X射線衍射儀(XRD)、拉曼光譜儀(Raman)、場發射檢測系統及充放電系統等進行特性分析檢測。以電漿光譜分析(Optical emission spectroscopy,OES)與熱影像儀(Thermal imager)進行試片處溫度即時檢測分析,其平均電子溫度為6660 K而表面溫度約為574℃到803℃之間。經由檢測其奈米碳管可成長於氧化鋅上之複合元件起使電場為0.31 V μm−1遠低於奈米碳管、氧化鋅及碳管氧化鋅複合材,而經由定電流充放電測試其比電容值為188 Fg-1。

關鍵字

微波電漿 氧化鋅 奈米碳管

並列摘要


In the past, many studies have investigated the field emission properties of CNTs and ZnO nanostructures. In the present study, we fabricated CNT-ZnO composite films by Microwave Plasma Jet Chemical Vapor Deposition System (MPJCVD), where CNT-ZnO was expected to be a supporting matrix. The control system operates of MPJCVD in a real-time environment, dynamic data exchange and recording, networking, and multitasking capabilities.High Frequency Structure Simulator(HFSS)software was used to calculate electrical fields around specimen under different geometrical control of E-H tuner of MPJVCD. The simulated results were compared to plasma images, from camera and to plasma spectrum. SEM, EDS, and XRD were used to examine the morphology, composition, phase structure and crystallinity of ZnO films. Via calculating the electrostatic field distribution, it was found that this giant enhancement of FE performance is due to the typical general CNTs, ZnO nanowires and ZnO-CNT composite. The turn-on field of an emission device constructed with the ZnO-CNT composite was 0.31 V μm−1, which was lower than that of the common CNT and ZnO. As the results of field emission tests, the CNTs on ZnO films could be a useful material in the emission applications.Electrochemical characterization by galvanostatic discharge/charge tests demonstrate that the conversion reactions in ZnO/CNT electrodes enable reversible capacity of 188 Fg-1.

並列關鍵字

Microwave Plasma ZnO CNT

參考文獻


1. C. Zhang, G. Zhang, S. Leparoux, H. Liao, C.X. Li, C.J. Li and C. Coddet, "Microwave sintering of plasma–sprayed yttria stabilized zirconia electrolyte coating," Journal of the European Ceramic Society, vol.28,no.13, 2008, pp. 2529–2538.
4. M. M. Larijani, F. Le Normand, and O. Cregut, "An optical emission spectroscopy study of the plasma generated in the DC HF CVD nucleation of diamond," Applied Surface Science, vol. 253, 2007, pp. 4051–4059.
5. H.C. Barshilia and N. Gupta, "Superhydrophobic polytetrafluoroethylene surfaces with leaf-like micro-protrusions through Ar + O2 plasma etching process,"Vacuum, vol.99, 2014, pp. 42-48.
7. Z.K. Tang, G.K.L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, "Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films,"Applied Physics Letters, vol.72, no.25, 1998, pp. 3270-3272.
8. M.A. de la Rubia Lopez, M. Peiteado, J.F. Fernandez, A.C. Caballero, J. Holc, S. Drnovsek, D. Kuscer, M. Kosec, "Thick film ZnO based varistors prepared by screen printing," Journal of the European Ceramic Society, vol.26, no.14, 2006, pp. 2985-2989.

延伸閱讀