透過您的圖書館登入
IP:3.23.101.60
  • 學位論文

以光沉積法製備奈米金觸媒在一氧化碳催化反應之研究

A study of CO oxidation on gold nanocatalysts prepared by photo-deposition method

指導教授 : 楊重光
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究主要以光沉積法製備奈米金觸媒,並探討不同的照光形式及溶液酸鹼值,對所合成金觸媒之一氧化碳催化影響。 本研究係利用四氯金酸作為金的前驅物,二氧化鈦(P25)作為觸媒載體。此外,本實驗以LED燈為光源,並搭配可調頻控制器與監控示波器,自製一套光還原合成系統。實驗規劃係利用實驗設計法搭配變異數分析(Analysis of Variance, ANOVA)進行實驗規劃與探討,主要分析因子有照光頻率、照光工作週期、照光時間和前驅物溶液pH值。再者,所合成之觸媒利用相關儀器進一步物性與化性分析。以X-射線繞射儀(X-ray Diffraction,XRD)進行觸媒材料成分分析;以X-光螢光分析儀(X-ray Fluorescence Spectrometer,XRF)進行元素定性和半定量分析;以穿透式電子顯微鏡(Transmission Electron Microscopy,TEM)來觀察觸媒微粒子形貌、粒徑大小與分佈;透過電子能譜化學分析儀 ( Electron Spectroscopy for Chemical Analysis,ESCA)分析金觸媒樣品之化學態;原位傅立葉散射-反射紅外光譜技術 ( in situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy,in situ DRIFTS) 監控金觸媒表面與一氧化碳或二氧化碳氣體分子的反應情形,藉以觀察氣體分子於觸媒表面之吸、脫附反應行為;以氣相層析儀( Gas Chromatography,GC) 偵測不同溫度下,一氧化碳轉化成二氧化碳之轉化率。最後,將上述所得實驗結果進一步分析,推測由光沉積法合成奈米金觸媒之顯著因子,並評估合成奈米金觸媒的最佳合成條件。

並列摘要


In this study, Au/TiO2 was prepared by photo-deposition method for oxidizing CO to CO2. Crystalline structure was identified by X-ray Diffraction (XRD); the elements of the sample were semi-quantified by X-ray Fluorescence Spectrometer (XRF). Morphologies and particle size of the sample were determined by Transmission Electron Microscopy (TEM), and elemental composition and chemical states were characterized by Electron Spectroscopy for Chemical Analysis (ESCA). Finally, gas chromatography (GC) was used to evaluate the CO conversion of catalysts at different temperatures. To examine these catalysts, Fourier transform infrared spectroscopy (FTIR) coupled with diffuse reflectance sampling accessory was used to study the mechanism of CO oxidation over Au/TiO2 at different temperatures. In addition, design of experiment (DOE) accompanied with ANOVA is applied to analyze the significance of the control factors. With the assistant of DOE, the optimization condition of CO oxidation over Au/TiO2 can be predicted by artificial neural network.

參考文獻


2. Haruta, M. and M. Daté, Advances in the catalysis of Au nanoparticles. Applied Catalysis A: General, 2001. 222(1-2): p. 427-437.
5. Bartlett, N., Relativistic effects and the chemistry of gold. Gold Bulletin, 1998. 31(1): p. 22-25.
6. Lagowski, J.J., ANIONIC GOLD. Gold Bulletin, 1983. 16(1): p. 8-11.
7. Bond, G.C., Gold: A relatively new catalyst. Catalysis Today, 2002. 72(1-2): p. 5-9.
8. Bond, G.C., et al., Hydrogenation over supported gold catalysts. Journal of the Chemical Society, Chemical Communications, 1973(13): p. 444b-445.

延伸閱讀