透過您的圖書館登入
IP:18.118.147.235
  • 學位論文

工業軸承之無電無線震動感測器開發

Wireless and powerless Sensing Node Development for Motor Monitoring System

指導教授 : 李達生
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


工具機主機的穩定性與可靠性可藉由感測器網路來做監控,此感測系統可以判定工具機運轉時的環境與狀態,供使用者即早得知工作狀態之情況,然而,以往傳統的工具機主機感測網路系統,必須在工具機主機外殼上加以穿孔加工,以便作為感測器網路系統之訊號線通道,此步驟因為需要額外加工,加上如果感測器網路訊號線如發生短路或斷路的情況時,整個感測器便失去效應,故在裝配感測器時往往需消耗許多成本與時間,因此,本研究開發一套無電無線感測器網路系統,改善以往傳統感測器的缺點。 此感測器搭配微機電晶片處裡器(MEMS),其系統包含了訊號處裡器、RFID無線傳送模組以及一磁鐵發電機來完成一簡單的無電無線感測器網路系統;訊號的傳遞是利用一連續電磁脈波來傳遞感測器測得之訊號,此電磁脈波可穿透工具機主機的外殼,提供接收端收取資料;磁鐵發電機則在轉動軸上加入一磁鐵滑環,利用轉動軸轉動帶動磁鐵滑環來切割平面線圈,再透過整流器將得到的電壓整流程感測器所需的電壓,達到無須外加電壓之狀態,透過上述理念及實現一簡單的無電無線感測器網路系統,而工具機主機的外殼只需裝ㄧ發射天線來傳送內部之訊號。 在本研究當中,將會於工具機主機內加裝此系統,且針對傳統感測器與此感測器的訊號來做比較,工具機震動訊號屬於高頻訊號,比起以往的溫度或壓力訊號,震動訊號因屬於高頻,所以透過無線傳輸系統傳送時,訊號的比對更顯重要,因此,本研究針對無線訊號的資料來探討,在下列的環境中:工具機外殼天線彎曲、拉直、折、斷掉的情況來測得訊號雜訊比,測得的範圍30db~12db間,與傳統的系統比較,新感測器在這些環境下都能有訊號產生且範圍也與傳統感測器相近,所以新感測器在本研究中被證實能有效的做為工具機主機的感測器網路以取代以往傳統的感測網路,此外,在本研究當中,由於裝置感測器屬於新開發方案,固也針對裝置無線無電感測器網路這部份來做研究。

並列摘要


Tooling system reliability and maintainability can be improved by sensor networks for condition monitoring of motors. However, it gets difficult to deploy sensor nodes in situ due to the harsh environment of industrial plants. The sensor wiring assembly can be damaged and that makes the monitoring system deployed to assure the machine reliability doesn’t work reliable. A wireless and powerless sensing node integrated with MEMS (Micro Electro-Mechanical System) sensors, a signal processor, a communication module and a magnetic self-power generator was developed in this study for implementation of an easy mounting sensor networks for monitoring motor condition. A special designed communication module transmits a sequence of electromagnetic (EM) pulses in response to a sensing signal. The EM pulses can pass through the machine case and deliver sensor signal to data acquisition center. By induction power generated by the coils on the sensing node and soft magnets attached on the shaft, the sensing system is self-sustaining and requires no wiring feed through motor casing. Only one signal line attached on the outside wall of the machine is needed to monitor motor conditions. The monitoring system equipped with the novel sensing nodes was constructed and assembled into a real spindle motor for the performance tests. Since the fault signature usually comes from abnormal vibration and the vibration sensor demands higher data transfer rate than the other temperature or pressure sensors, this study focused on the distribution of vibration sensing node and tested the effectiveness of data deliveries through wireless communication. Under different conditions that the sensor wire was bended, lengthened and even pulled apart, the monitoring system equipped with the wireless and powerless sensing node transferred vibration signal to data center continuously only with a signal to noise ratio changes from 30 dB to 12 dB. For the traditional system, the significant signal intensity degradation and drop off condition were observed. The test results illustrate the novel sensing node development can effectively improve working reliability of the motor monitoring system and it is expected to be a valuable technology available to the plant for implementation a reliable motor management program.

參考文獻


[1] T. G. Habetler, R. G. Harley, R. M. Tallam, S. B. Lee, R. Obaid, and J. Stack, “Complete current-based induction motor condition monitoring: stator, rotor, bearings, and load,” CIEP 2002 VIII IEEE International Power Electronics Congress, (2002) 3-8.
[2] G. B. Kliman, R. A. Koegl, J. Stein, R. D. Endicott, and M. W. Madden, “Noninvasive detection of broken rotor bars in operating induction motors,” IEEE Trans. Energy Conv., 3 (1988), 873-879.
[3] R. Schoen, T. Habetler, F. Kamran, and R. Bartfield, “Motor bearing damage detection using stator current monitoring,” IEEE Trans. Ind. Appl., 31(6) (1995) 1274-1279.
[4] S. Nandi, M. Bharadwaj, and H. A. Toliyat, “Performance Analysis of a Three-Phase Induction Motor Under Mixed Eccentricity Condition,” IEEE Trans. Energy Conv., 17 (2002) 392-399.
[5] J. Robinson, C.D. Whelan, and H.K. Haggerty, “Trends in advanced motor protection and monitoring,” IEEE Trans. Industry Applications, 40(3) (2004) 853-860.

延伸閱讀