透過您的圖書館登入
IP:216.73.216.100
  • 學位論文

應用巢狀式群集分析方法改善顧客區隔效度之研究

A Study of Customer Segmentation Validity Improvement Using Nested-Clustering Method

指導教授 : 羅淑娟

摘要


客製化的服務趨向普及,行銷市場需要了解顧客真正的需求,造成顧客區隔的重要性不容忽視。近年來國內外有相當多的研究,應用了群集分析技術於龐大的顧客資料, 將顧客區隔之結果, 提供經營者或行銷人員行銷策略的依據。然而,群集分析技術的優劣,對於顧客區隔的結果影響極大,更直接影響到行銷策略之擬定。 本研究以國內某間線上社群交友網站為例,使用RFM 為群集分析中之區隔變數,而針對傳統式群集分析方法(在本研究中為K-Means 與Fuzzy C-Means)無法均勻的使用三個區隔變數, 造成最後的群體呈現帶狀或片狀分布的結果, 我們提出一個新的群集分析方法, 先以類神經網路方法將資料區隔為較多的群集, 由這些群集指派群中心,再以傳統式群集分析方法利用這些群中心,尋求最後結果,期盼能改善傳統式群集分析方法帶來的缺失,以提升顧客區隔之效度。

並列摘要


Nowadays, Since Customization has been used extensively, market needs to realize the most important demand from customer, Customer Segmentation plays an important role in the marketing region. A large amount of research applied clustering analysis to segment the huge customer data in order to provide marketing strategy principle for manager or marketing staffs in recent years. However, the ability of clustering method will affect the result of customer segmentation and directly influence the drawing-up of marketing strategy further.  In this research, we adopt RFM model for segment variables on clustering analysis by using an on-line community web site. Due to the Traditional Clustering Method(K-Means and Fuzzy C-Means) being unable to use all of the variables uniformly result in the final cluster forming a sheet or belt shape distribution, we propose a novel clustering method which segments large numbers of data in the first step, then assigns cluster centroid for the second step executing the final clustering method. By this method, we expect to improve the defective in traditional clustering method and promote the validity of customer segmentation.

參考文獻


[11] Ha, S. H. and Park, S. C., ” Application of data mining tools to hotel data mart on
[40] 陳瑋翔,應用資料探勘技術於客戶分群之研究-以線上音樂公司為例,碩士
資訊管理系,2004。
[1] Bauer, C. L., “A Direct Mail Customer Purchase Model,” Journal of Direct
Marketing, Vol.2, 1988, pp.16-24.

被引用紀錄


謝孟開(2016)。應用群集分析法於課堂計畫分組之研究〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201600669
黃于真(2013)。運用統計與資料探勘方法進行顧客購買行為分析〔碩士論文,長榮大學〕。華藝線上圖書館。https://doi.org/10.6833/CJCU.2013.00046
林玉國(2007)。以高價值群顧客為基之聯想式線上社群推薦機制〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-2106200703384500

延伸閱讀