透過您的圖書館登入
IP:3.145.17.20
  • 學位論文

奈米潤滑液之製備與磨潤特性研究

A study of tribological properties for preparing nanoparticles lubricant

指導教授 : 張合 韓麗龍
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究選擇車用引擎潤滑液添加奈米金屬,利用改良式真空潛弧製造系統(SANSS)製備奈米氧化銅(CuO)與奈米二氧化鈦(TiO2)溶液懸液,並研製出一階合成、二階合成與商用粉末合成等三種製程方法。除了探討奈米顆粒的形貌特性外,並使用微摩擦測試儀量測各合成油液的摩擦係數。在磨耗特性方面,利用往復式摩耗試驗機進行實驗,磨耗後的試片分別利用場發射掃瞄式電子顯微鏡、電子天秤等精密分析儀器,觀察奈米金屬顆粒形狀與試片表面磨耗微觀結構型態。實驗結果顯示,在鈦系複合潤滑液中,使用商業粉末合成之奈米鈦油液有最低摩擦係數、最低磨耗損失量與最平緩之磨耗表面;而在銅系複合潤滑液中,表現最為出色的是一階合成之奈米銅油液。將這二種潤滑液做比較,一階銅液的磨潤特性則又比商業鈦液來得出色,推斷因磨耗負荷力、試片硬度等相關因素造成鈦金屬無法有效達到顆粒磨潤作用。

並列摘要


Using metal nanoparticles as additive in engine oil. This purpose of this study is to use an innovation Submerged Arc Nanoparticles Synthesis System (SANSS) to prepare the CuO nanofluids and the TiO2 nanofluids. There are there ways which are one step synthesize, two step synthesize and commercial powder two step synthesize to manufacture nanofluids. In addition to discuss the nanoparticles surface, we use universal micro-tribometer to measure the friction coefficient of each composite oil. We also use the reciprocating wearing tester to analyze the wearing characters. Finally, we use the FE-SEM and the electronic scale separately to observe the nanoparticles surface and the wearing surface on disc. From experiment results reveal that commercial TiO2 nanofluid has the lowest friction coefficient, the lowest wear loss and the most gently wearing surface. And the best nanofluid of Cu series composite oil is one step synthesize CuO nanofluid. To make compare with this two kinds of nanofluid, we can find one step synthesize CuO nanofluid are batter than commercial TiO2 nanofluid. We infer that the load and the hardness between disc and nanoparticles make TiO2 nanoparticles can’t develop good lubricative effect.

並列關鍵字

wear nanoparticles lubricant friction coefficient

參考文獻


[10] 簡依玲,微奈米磨潤下金屬材料磨耗行為之研究,碩士論文,崑山科技大學,台南,2005。
[48] 林詩傑,改良式真空潛弧製程製備奈米二氧化鈦懸浮液之性質研究,碩士論文,國立台北科技大學,台北,2006。
[1] Q. Xue, W. Liu and Z. Zhang, "Friction and wear properties of surface modified TiO2 nanoparticle as an additive in liquid paraffin," Wear, vol. 213, 1997, pp. 29-32.
[3] B. Duan and H. Lei, "The effect of particle size on the lubricating properties of colloidal polystyrene used as water based lubrication additive," Wear, vol. 249, 2001, pp. 528-532.
[6] S. Bahadur and C. Sunkara, "Effect of transfer film structure, composition and bonding on thetribological behavior of polyphenylene sulfide filled with nanoparticles of TiO, ZnO, CuO and SiC," Wear, vol. 258, 2005, pp.1411-1421.

被引用紀錄


王皓賢(2014)。氣壓缸內部缸體經陽極鍍膜之動態摩擦研究〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2014.00338
涂惠珊(2014)。Bi和Bi/Cu奈米顆粒添加於SAE-30潤滑油之磨潤特性〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2014.00262
彭鶴雲(2010)。水性奈米木器塗料之性質研究〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-1608201017474300
邱嬿真(2011)。TiO2、CuO奈米潤滑脂應用於氣壓缸之摩擦特性研究〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-0608201103112600
羅晉德(2013)。Sn和Cu奈米顆粒做為添加劑加入鋰基潤滑油脂的降摩擦和抗磨損性質〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-1308201323061700

延伸閱讀