透過您的圖書館登入
IP:3.12.160.196
  • 學位論文

自動導航車之模糊追隨控制

Object Following Fuzzy Control of the Automatic Guided Vehicle

指導教授 : 姚立德

摘要


為控制自動導航車得以平滑地追隨前方移動中的目標物,且在追隨的過程中隨著目標物的移動速度及移動方向跟著改變自走車的追隨速度及追隨方向,本文設計模糊速度控制器、模糊距離控制器、模糊煞車控制器及方向控制器達成目標物追隨之目的。 模糊速度控制器應用聲納感測器及目標物之資訊,提供追隨速度追隨前方的目標物,且讓自走車與目標物間可以維持一定的安全距離,模糊距離控制器應用聲納感測器所回傳的值,以估測前方目標物與自走車之間的相對距離,提供自走車在速度控制器的範圍之外所需要的追隨速度,模糊煞車控制器應用聲納感測器所回傳的值,估測前方的目標物是否已停止,提供自走車欲煞車的反轉速度,配合本文設計一方向控制器,透過聲納感測值為基礎的追隨方向判定方式,使自走車在追隨前方移動中的目標物時,可以依據不同的情況選擇所屬的控制器,進而達到目標物追隨的目的。 本文中所要追隨的目標物除了移動中的人之外,另外利用文中所提出之控制策略稍加修改後,再結合通訊傳輸的部份,即可以控制自走車追隨前方移動中的另一台車子。

並列摘要


In order to control the automatic guided vehicle(AGV) following the target object while moving in the front and following speed and the direction of target object during the process, a fuzzy speed controller, a distance controller, a fuzzy brake controller and a direction controller are proposed to control the AGV following the target object. A fuzzy speed controller applies the sonar to provide the speed of following to follow the target object and further retain the distance within the safe range between object and AGV. A fuzzy distance controller applies the sonar to provide the speed of following needed outside the range of the speed controller. A fuzzy brake controller applies the sonar to provide the inverse speed of braking. According to the estimated following direction, a direction controller applies the sonar to provide the direction of following. In this article must following the target object besides the people while moving in the front, utilize the control strategy, and then combine the communication, namely can control the AGV following another AGV while moving in the front.

參考文獻


[2] P. Veelaert and W. Bogaerts, “Ultrasonic potential field sensor for obstacle avoidance,” IEEE Trans. on Robotics and Automation, vol. 15, no. 4, Aug. 1999, pp. 774-779.
[4] E. M. Petriu, “Automated guided vehicle with absolute encoded guide-path,” IEEE Trans. on Robotics and Automation, vol. 7, no. 4, Aug. 1991, pp. 562-565.
[5] L. X. Wang, and J. M. Mendel, “Generating fuzzy rules by learning from examples,” IEEE Trans. Syst., Man, Cybern., vol. 22, no. 6, Nov./Dec. 1992, pp. 263-268.
[6] D. Nguyen and B. Widrow, “The truck backer-upper: an example of self-learning in neural networks,” in Proc. Int. Joint Conf. on Neural Networks, Washington, DC, vol. 2, 1989, pp. 357-363.
[8] C. M. Higgins and R. M. Goodman, “Fuzzy rule-based networks for control,” IEEE Trans. on Fuzzy Systems, vol. 2, no. 1, 1994, pp. 82-88.

被引用紀錄


楊懷新(2009)。即時影像定位和建置地圖〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2009.00309
游秋榮(2009)。應用立體視覺之自動停車系統設計與實現〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2009.00288
黃世達(2008)。基於影像之自動導航車追隨控制〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2008.00091
林哲瑋(2007)。基於即時影像之模糊追隨控制〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2007.00231
葉俞廷(2016)。應用即時影像及模糊控制理論於輪型機器人之自主循跡避障控制〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201600123

延伸閱讀