透過您的圖書館登入
IP:3.17.174.239
  • 學位論文

以甘胺酸燃燒法製備中溫型固態氧化物燃料電池之陰極材料Pr2CuO4之研究

Fabrication of Pr2CuO4 cathode material by glycine-nitrate combustion method for intermediate-temperature SOFC

指導教授 : 邱德威

摘要


本研究採用燃燒合成法(glycine-nitrate combustion method;GNP)製備中溫型燃料電池(IT-SOFC)的陰極材料,Pr2CuO4是屬於Ruddlesden-popper結構系列的Ln2CuO4(LN=镨,釹,釤)。在1100°C下,其陰極材料(Pr2CuO4)和電解質(SDC)之間的反應顯示良好的化學穩定性。Pr2CuO4在溫度範圍為200-800°C的熱膨脹係數(TEC)約為12.12×10-6K-1。當Pr2CuO4陰極材料在1000℃下燒結,並於在800℃空氣下表現出最低的極化電阻(1.714Ωcm2)。另一部份,我們將Pr2CuO4 陰極粉末加入不同重量比的Sm0.2Ce0.8O1.9 (SDC)商業電解質粉末,在溫度範圍為600-800°C之間進行測量電性分析,在800℃空氣下,其中混合10 wt.% SDC 的材料顯示有最低的比表面積電阻(0.3505 Ω cm2)。PCO-SDC複合陰極也適用於中溫型固態氧化物燃料電池,利用Rietveld精算可發現Pr2CuO4隨煆燒溫度增加到1000℃ 其單位晶胞體積增加,當煆燒溫度繼續升溫,其單位晶胞體積隨之下降,陰極材料其電性、成分組成與表面型態分別使用X光繞射(XRD)、掃描式電子顯微鏡(SEM)、交流阻抗分析儀(AC)來鑑定。

並列摘要


Pr2CuO4 compound belongs to Ruddlesden-Popper structure series Ln2CuO4(Ln=Pr, Nd and Sm ), Pr2CuO4 cathodes of powders were prepared by glycine nitrate process (GNP). The reactivity between cathode (Pr2CuO4) and electrolytes (SDC) shows good chemical stability under 1100°C. The thermal expansion coefficient (TEC) of Pr2CuO4 is about 12.12 × 10-6 K-1 in the temperature range 200-800°C.When the Pr2CuO4 sintered at 1000°C exhibited the lowest polarization resistance read as 1.714Ω cm2 at 800°C in air. The PCO powders were mixed with various wt.% of Sm0.2Ce0.8O1.9 (SDC) to investigate the electrical characteristics between 600°C and 800°C in air. The mixture with 10 wt.% SDC exhibited the lowest area-specific resistances read as 0.3505 Ω cm2 for Ag/PCO-10 wt.% SDC/SDC/Ag configurations at 800°C in air. These results show that the PCO-SDC composite cathode is promising for application in IT-SOFCs. The cathode materials are characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and AC impedance spectroscopy.

參考文獻


[2]R. O’Hayre, S. W. Cha, W. Colella, F. B. Prinz, “Fuel Cell Fundamentals”, John Wiley & Sons, Inc (2008).
[3]S.C. Singhal “Advances in solid oxide fuel cell technology”, Solid State Ionics 135 (2000) 305–313.
[4]S.P.S. Badwal “Stability of solid oxide fuel cell components”, Solid State Ionics 143 (2001) 39–46.
[5]J.P.P. Huijsmans “Ceramics in solid oxide fuel cells”, Current Opinion in Solid State and Materials Science 5 (2001) 317–323.
[6]S.C. Singhal “Solid oxide fuel cells for stationary, mobile, and military applications”, Solid State Ionics 152–153 (2002) 405– 410.

延伸閱讀