透過您的圖書館登入
IP:13.58.121.189
  • 學位論文

使用固體鋅擴散製程於磷化銦太陽能電池之研究

Fabrication of InP-based Solar Cell Using Solid Source Zinc Diffusion Process

指導教授 : 何文章

摘要


鋅擴散已被廣泛使用在Ⅲ-Ⅴ化合物半導體,而在元件製程方面鋅擴散是一相當關鍵的步驟,因為P-N接面的深度、陡度、均勻度、及電洞濃度均由鋅擴散製程決定,上述這些參數p-n決定元件的特性、良率等。本實驗利用固體鋅(Zn3P2)擴散源及快速熱退火的方式(Solid source/ RTA) 建立鋅擴散製程參數及應用於太陽能電池製作。 本實驗在不同磊晶結構以N型為主的磷化銦基板上,以擴散溫度550℃擴散時間10分鐘,擴散形成 p+型區域,然後再以600℃ 時間10秒鐘的快速熱退火活化(Activation)處理,將電洞濃度提昇至≧3×1018cm-3。經由ECV載子濃度分佈量測其p-n之接面陡峭度與擴散深度。 利用Solid source/Rapid Thermal Annealing技術,將鋅(Zn)以熱擴散進入n-/n+-InP基板及n-/i/n+-InP基板形成p+-n接面,並且製作完成 p+/n–-n+- InP與p+/n–-i-n+- InP太陽能電池。我們量測其二極體p-n接面暗特性,獲得逆向飽和電流(I0)與理想因子(Ideality factor,n)參數;另外,在AM 1.5G、25℃條件下,量測太陽能電池的特性參數:開路電壓(Open circuit voltages, Voc)、短路電流密度(Short circuit current density, Jsc)、填充因子(Fill factor,FF)與轉換效率(Conversion efficiency,η)。 最後,我們成功的製作出p+-n以N型磷化銦為基板的太陽能電池,所得到的雙異質磊晶結構磷化銦/砷化銦鎵/磷化銦太陽能電池在未加上抗反射膜前,短路電流密度(Jsc)為34.72 mA/cm2,而轉換效率(η)為7.62%,經由電子槍蒸鍍系統蒸鍍雙層抗反射膜技術來成長抗反射膜,所得到的短路電流密度45.76mA/cm2而轉換效率為10.29%。;磊晶片磷化銦太陽能電池在未加上抗反射膜前,所得到的短路電流密度為26.23 mA/cm2而轉換效率為8.41%,最後經由蒸鍍雙層抗反射膜技術成長抗反射膜後,所得到的短路電流密度34.88mA/cm2而轉換效率為11.64%。另外,當電極線寬為27μm,間距為590μm時,能夠滿足最佳化電極設計的要求。

並列摘要


The Zn diffusion using a solid source is a relatively simple and reproducible method for mass production of InP-base optoelectronic devices. In this study, we use the Zn3P2 compounds as diffusion source for diffusion in n-type InP surface in a semi-closed ampoule. Diffusion was performed in the rapid thermal anneal (RTA) system under the nitrogen ambient. Finally, the wafer were activated additionally at 600℃ for 10 sec by the same RTA system to achieve a high degree of activation. This thesis is study using solid source (Zn3P2) and RTA diffusion technique for a p-n junction InP solar cell fabricated process. Firstly, the zinc (Zn) diffusion source was diffused in the hetrojunction InP wafer (n-/i/n+-InP) and epi-n-type single crystal InP wafer (n-/n+-InP) annealing at 550 ° C and 10 minutes for diffusion and to form a p + -n junction. The ideality factor of fabricating n-/i/n+-InP and n-/n+-InP pn diode are 1.83 and 1.94, respectively. And then, the InP solar cells evaporated with TiO2 of 59.2nm and SiO2 of 95.4nm double anti-reflective layer were characterization. Finally, we use Solid source/RTA process to fabricate the InP solar cells which the Zn impurities were thermally diffusing into hetrojunction InP (InP/InGaAs/InP) and n-type epitaxial InP (n-/n+-InP) to form P+n junction. And then, cells area are 0.1296cm2 under AM1.5G, 25℃ conditions, the performances of fabricated hetrojunction InP (InP/InGaAs/InP) and n-type epitaxial InP (n-/n+-InP) solar cell were measured and analyzed. In the absence of AR-Coating, the hetrojunction InP open circuit voltage Voc of 0.35V, short-circuit current density Jsc of 34.72mA/cm2, and η of 7.61% are presented;with double layer AR-coating, Voc of 0.35V, Jsc of 45.75mA/cm2, and η increased to 35.21% are obtained; more over, the (n-/n+-InP) solar cell in the absence of AR-Coating, open circuit voltage Voc of 0.75V, short-circuit current density Jsc of 26.23mA/cm2, and η of 8.41% are presented;with double layer AR coating, Voc of 0.75V, Jsc of 34.87mA/cm2, and η increased to 38.4%.

參考文獻


[48] 嚴啟銘, “塗佈磷擴散源技術應用於矽晶太陽能電池之研究” ,國立台北科技
[1] K. N. Amulya and J. Goldemberg, “Energy for the developing world,” Sci. Amer, vol. 263, 1990, pp. 63-71.
[2] Martin A.Green, “Solar Cells Operating Prinicples, Technology and System Applications,” 2009, pp.2
[3] Loucas Tsakalakos, “Nanotechnology for Photovoltaics,” 2010, pp.1.
[4] D. M. Chapin and C. S. Fueller, “A new silicon p-n junction photocell for converting solar radiation into electrical power,” Journal of Applied Physics, Vol. 25, 1954, pp. 676-677.

延伸閱讀