透過您的圖書館登入
IP:18.217.200.151
  • 學位論文

塗佈磷擴散源技術應用於矽晶太陽能電池之研究

Application of Spin-on Phosphorus Diffusion Source Technology on Single and Poly Crystal Silicon Solar Cells

指導教授 : 何文章

摘要


本論文研究是藉由Spin-on Film磷擴散技術,將擴散源經旋轉塗佈於矽晶圓上並以高溫退火成功形成pn接面,以簡化矽太陽電池製作流程與降低其製作成本。由於Spin-on Film 擴散技術具有低成本、製程簡易及可用於大面積製程等優點,所以相當適合應用於太陽電池的製作。 首先利用Spin-on Film/Rapid Thermal Annealing (SOF/RTA)擴散技術,將磷 (P)擴散源以擴散溫度為900°C與擴散時間為2分鐘的熱擴散方式進入單晶矽與多晶矽形成n+-p junction。製作出的p-n二極體之理想性因子 (ideality factor)分別為1.67與2.3。最後製作成矽晶太陽電池,利用電子槍蒸鍍的方式在其表面覆蓋一層59.2nm的TiO2的抗反射膜或利用塗佈方式成長三層 (SiO2/TiO2/TiO2)抗反射層。 最後我們完成矽晶太陽能電池(面積為0.1296cm2),在AM1.5G、25°C條件下,電池遮蔽率為10.4%(最佳化設計),在沒有抗反射膜(AR coating)時,開路電壓(Open circuit voltage, Voc)為0.54V,短路電流(Short circuit current, Isc)為3.78mA,填充因子(Fill factor, FF)為73.7%,轉換效率(Conversion Efficiency, η)為12.01%。經蒸鍍完單層TiO2抗反射膜後的開路電壓(Voc)為0.56V,短路電流(Isc)為5.13mA,填充因子(Fill factor, FF)為73.8%,轉換效率(Conversion Efficiency, η)提升至16.35%;經旋塗完三層(SiO2/TiO2/TiO2)抗反射層之後的開路電壓(Voc)為0.56V,短路電流(Isc)為5.34mA,填充因子(Fill factor, FF)為78.8%,轉換效率(Conversion Efficiency, η)提升至18.25%。

並列摘要


This thesis is study the Spin-on film phosphorus and RTA diffusion technique for a pn junction silicon solar cell fabricated process. Since spin-on film diffusion technology has low cost, simple process and can be for large area process, so it is very suitable for solar cell production. Firstly, the phosphorus (P) diffusion source was spin upon the p-type single crystal Si wafer annealing at 900 ° C and 2 minutes for diffusion and to form a n + -p junction. The ideality factor of fabricating single crystal silicon and poly crystal silicon pn diode are 1.67 and 2.3, respectively. Then, the silicon solar cells with an evaporated a TiO2 of 59.2nm and spin coating with three SiO2/TiO2/TiO2 anti-reflective layer were characterization. Finally, cells area are 0.1296cm2 under AM1.5G, 25℃ conditions, the performances of fabricated single crystal silicon solar cell were measured and analyzed. In the absence of AR-Coating, the open circuit voltage Voc of 0.54V, short-circuit current Isc of 3.78mA, FF of 73.7%, and η of 12.01% are presented;with one TiO2 layer AR coating, Voc of 0.56V, Isc of 5.13mA, FF of 73.8%, and η increased to 16.35% are obtained; more over, by spin-coating three SiO2/TiO2/TiO2 AR coating, the Voc of 0.56V, Isc of 5.34mA, FF of 78.8%, and η increased to 18.25% are also achieved.

參考文獻


[1] K. N. Amulya and J. Goldemberg, “Energy for the developing world,” Sci. Amer, vol. 263, 1990, pp. 63-71.
[3] D. M. Chapin and C. S. Fueller, “A new silicon p-n junction photocell for converting solar radiation into electrical power,” Journal of Applied Physics, vol. 25, 1954, pp. 676-677.
[5] Martin A. Green, Keith Emery, David L. King, Yoshihiro Hishikawa, and Wilhelm Warta, “Solar cell efficiency table (version 28),” Prog. Photovolt: Res. Appl., vol. 14, 2006, pp. 455-461.
[6] Miguel A. Contreras, K. Ramanathan, J. AbuShama, F. Hasoon, D.L. Young, B. Egaas and R. Nonfi, “Diode Characteristics in State-of-the-art ZnO/CdS/CuSe2 Solar Cells,” Progress in Photovoltaics: Research and Application, vol. 13, 2005, pp. 209-216.
[8] M. Taguchi, K. Kawamto, S. Tsuge, “HIT(TM) cells-High efficiency crystalline Si cells with novel structure,” Progress in Photovoltaics 8, vol. 5, 2000, p.p. 503-513.

被引用紀錄


梁嘉堯(2012)。含氮奈米晶鑽石膜之光電特性及在太陽能電池之應用〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2012.00087
陳元立(2011)。使用固體鋅擴散製程於磷化銦太陽能電池之研究〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2011.00298

延伸閱讀