透過您的圖書館登入
IP:3.144.127.232
  • 學位論文

高功率脈衝磁控濺鍍製備氮化鋁薄膜之參數探討及薄膜性質研究

Influences of the Deposition Parameters on the Properties of Aluminum Nitride thin film by the High Power Impulse Magnetron sputtering

指導教授 : 楊永欽
共同指導教授 : 李志偉

摘要


在本研究中,氮化鋁(AlN)薄膜藉由高功率脈衝磁控濺鍍系統(HIPIMS)來進行鍍製,接著使用田口方法(Taguchi method)來找出最佳的沉積氮化鋁薄膜之條件。本研究使用田口方法之L9表來設定薄膜沉積參數,藉由改變脈衝參數(佔空比、工作頻率)、基板偏壓及薄膜沉積溫度來鍍製氮化鋁薄膜。並以田口方法信號雜訊比(S/N ratio)、及變異數分析(ANOVA)來進行數據分析,找出個別適合高硬度及在可見光範圍(400-700 nm)內具高平均穿透率之氮化鋁薄膜沉積條件。實驗鍍製出之氮化鋁薄膜皆為h-AlN結構,典型的柱狀晶結構可在每一片薄膜上被觀察到。使用愈大代表愈好的信號雜訊比及變異數分析可以得知,基板偏壓為薄膜硬度值之最大影響因子,而佔空比為在可見光範圍(400-700 nm)內平均穿透率數值之最大影響因子。最後以最大信號雜訊比之製成參數來進行氮化鋁薄膜鍍製,以驗證信號雜訊比及變異數分析成效。並由上述參數成功分別鍍製出硬度值高達25.0 GPa及在可見光範圍(400-700 nm)內具平均穿透率高達83.4 %之氮化鋁薄膜。

並列摘要


In this work, aluminium nitride (AlN) thin films were fabricated using the high power impulse magnetron sputtering (HIPIMS) process through the Taguchi method to determine the optimum deposition condition. A L9 array, signal-to-noise (S/N) ratio, and analysis of variance (ANOVA) were applied to study the deposition parameters (pulse frequency, duty cycle, temperature, and substrate bias) with consideration of the microstructure, hardness and transmittance properties of AlN coatings. The wurtzite hexagonal AlN structure was achieved for each coating. Typical fine and dense columnar structure was observed for AlN coating. Based on the higher the better concept using S/N ratio and the contribution using ANOVA, the substrate bias was the most influence parameter for the hardness of AlN coating. On the other hand, the duty cycle was important proportionally for the transmittance of AlN coatings. Confirmation tests with optimal deposition parameters were performed to verify the effectiveness of the Taguchi optimization analysis in this work. The maximum hardness of 25.0 GPa and transmittance of 83.4 % were achieved, respectively, for the AlN coatings deposited with optimal deposition parameters.

參考文獻


[1] Ulf Helmersson, Martina Lattemann, Johan Bohlmark, Arutiun P. Ehiasarian, and Jon Tomas Gudmundsson, "Ionized physical vapor deposition (IPVD): A review of technology and applications," Thin Solid Films, 2006, 513, 1-24.
[2] I. Petrov, A. Myers, J. E. Greene, and J. R. Abelson, "Mass and energy resolved detection of ions and neutral sputtered species incident at the substrate during reactive magnetron sputtering of Ti in mixed Ar+N2 mixtures," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1994, 12, 2846-2854.
[3] A. P. Ehiasarian, R. New, W. D. Munz, L. Hultman, U. Helmersson, and V. Kouznetsov, "Influence of high power densities on the composition of pulsed magnetron plasmas," Vacuum, 2002, 65, 147-154.
[4] Y. P. Purandare, A. P. Ehiasarian, and P. E. Hovsepian, "Deposition of nanoscale multilayer CrN/NbN physical vapor deposition coatings by high power impulse magnetron sputtering," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2008, 26, 288-296.
[5] P. Eh. Hovsepian, C. Reinhard, and A. P. Ehiasarian, "CrAlYN/CrN superlattice coatings deposited by the combined high power impulse magnetron sputtering/unbalanced magnetron sputtering technique," Surface and Coatings Technology, 2006, 201, 4105-4110.

延伸閱讀