透過您的圖書館登入
IP:3.144.107.191
  • 學位論文

電解液於製備陽極脈衝二氧化鈦奈米管之研究

Electrolytes for the preparation of titanium dioxide nanotube in pulse anodization

指導教授 : 薛文景

摘要


本研究是以陽極處理搭配脈衝製程,以純鈦為陽極、鉑為陰極在純鈦基板上製備出排列規則有序的二氧化鈦奈米管陣列,可經由溫度、時間、電壓、脈衝頻率及電解液的種類等參數的控制製備欲得到的奈米管結構。此奈米管具有較大的比表面積及較高的表面活性。 以乙二醇添加0.5wt%氟化銨及0~5wt%去離子水均勻混合作為電解液,並於持溫10℃、反應時間3小時下作20V、30V、40V、50V、60V的電壓變化做為實驗參數,藉此得到二氧化鈦奈米管,再進行奈米管的特性分析,包含表面形貌、管長、管徑量測及電化學交流阻抗分析。 以此方法可製備垂直基板的奈米管,且奈米管的管長控制在0.7μm到12μm的範圍之內,而奈米管的管徑可控制在30nm到150nm的範圍之中。當有水的添加時,可降低電解液的黏性,有助於離子在電解液中的擴散,可改善覆蓋的氧化層並且降低了化學溶解的現象發生率。

並列摘要


In this research, the order titanium dioxide nanotube arrays be preparing by anodizing with pulse process, titanium as anode and platinum as cathode. It could get nanotubes that we need in controlling many parameter, like temperature、time、voltage、pulse frequency and electrolytes. The nanotubes were more surface area and higher surface active. The titanium dioxide nanotube can be gain at 10℃ and 3hours by changing voltage about (20V、30V、40V、50V、60V) as experiment parameter with electrolyte of mixed of 0.5wt% ammonium fluoride (NH4F)+0~2wt% Deionized water (H2O)+ethylene glycol (EG). Then, the morphology、diameter、length、Electrochemical Impedance Spectroscopy analysis of titanium dioxide nanotube were investigated. Effects of micro-morphologies on the composition of the electrolytes and applied potentials were elucidated by using scanning electron microscope (SEM, JEOL 6500). Electrochemical impedance spectroscopy (EIS) analyses were monitored to the electrochemical properties of nanotubes with models of equivalent circuit demonstrated. By applying each of different voltages, the titanium dioxide nanotube were grown vertically on the surfaces of titanium specimens where their length could be controlled from 30nm to 150nm with diameters of 0.7μm to 12μm. Increasing proportions of deionized water added in EG solution, the descended viscosity of solution would enhance its ion diffusion and reduce chemical dissolution to a stable oxide layer.

並列關鍵字

Anodization Pulse titanium dioxide nanotube

參考文獻


[1] M. Adachi, Y. Murata, M. Harada and Y. Yoshikawa, "Formation of titania nanotubes with high photo-catalytic activity", Chemistry Letters, vol. 29, no. 8, 2000, pp. 942-943.
[2] S. Z. Chu, S. Inoue, K. Wada, D. Li, H. Haneda and S. Awatsu, "Highly porous (TiO2-SiO2-TeO2)/Al2O3/TiO2 composite nanostructures on glass with enhanced photocatalysis fabricated by anodization and sol-gel process", Journal of Physical Chemistry B, vol. 107, no. 8, 2003, pp. 6586-6589.
[3] G. Dagan and M. Tomkiewicz, "TiO2 aerogels for photocatalytic decontamination of aquatic environments", Journal of Physical Chemistry, vol. 97, no. 49, 1993, pp. 12651-12655.
[4] O. K. Varghese, D. Gong, M. Paulose, K. G. Ong, E. C. Dickey and C. A. Grimes, "Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure", Advanced Materials, vol. 15, no. 7-8, 2003, pp. 624-627.
[5] G. K. Mor, M. A. Carvalho, O. K. Varghese, M. V. Pishko and C. A. Grimes, "A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination", Journal of Materials Research, vol. 19, no. 2, 2004, pp. 628-634.

延伸閱讀