透過您的圖書館登入
IP:3.145.133.121
  • 學位論文

生物微粒之分離與操控晶片

Separation and Manipulation of Bio-particles Chips

指導教授 : 黃榮堂

摘要


利用介電力(Dielectrophoresis Force) 的特性來分離或操控生物微粒的技術已經存在一段時間了,但是當微粒的介電特性相近時,分離便會有盲點,本研究為了解決此一問題提出一種新式的快速分離法。此外未來將會整合其至整合型生物晶片上,以達到自檢體到檢驗結果一次完成,所以必須做到快速分離,並將經過分離後之生物微粒以大量傳送的方式傳送到整合型晶片的下一站。 本研究主要先探討介電泳力的理論,再加以設計出一套分離方式,為了證明此設計的可行性,所以利用模擬軟體(CFDRC)模擬出電場的強度與分佈,並利用它來模擬生物微粒在一導電液中受到介電力的運動軌跡,再搭配一系列的介電力實驗結果,最後依據模擬與實驗的結果,修改設計並製作。 在晶片的實際製作上,本研究利用微機電製程技術在玻璃基材上製作出微電極,並採用上下雙層電極的方式,讓晶片形成三維的結構,最後本研究成功的將同一介電特性不同密度的微粒以模擬的方式分離出來,在實驗上也做到了大量牽引。

關鍵字

細胞分離 介電力

並列摘要


Applying the property of DEP force to separate and manipulate bio-particles has already existed in the past two decades. While the dielectric properties of particles are similar, they caused failure in separation. In this thesis, in order to find the solution to the situation mentioned above, we research and bring up a new way of fast separation. In the future, we will integrate the technology into the bio-chip to improve the examination of bio-chip. Therefore, we must segregate bio-particles fast and make them widely transmit to the next station of integrated bio-chip. In this research, we primarily study the principle of DEP force, as well as design a new way of separation. Then, in order to prove the feasibility of the design, we use CFD-RC, a simulation software, to simulate the strength and distribution of electro-field, and we also utilize the software to simulate the motion of bio-particles. Eventually, by means of the result of simulation and experiment, we adjust our design and fabricate the chip. We use procedure of MEMS technology to fabricate the electrodes on the glass substrate and adopt double-layers electrodes forming 3D structure. Finally, we successfully separate two kinds of particles of the same dielectric property including different densities; travel a large number of bio-particles at the same time.

並列關鍵字

separation dielectrophoresis

參考文獻


[1] M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger et al. “ An integrated nanoliter DNA analysis device”, Science, 484-487, (1998).
[2] I. Schneegaß, J. M. Köhler, “Flow-Through Polymerase Chain Reactions in Chip Thermocycles”, Reviews in Molecular Biotechnology 82, 2001, pp.101-121.
[4] T. Allen Particle Size Measurement, London: Chapman & Hall 1990, pp. 329-372.
[6] H.A. Crissman and J.A. Steinlamp, ”Rapid simultaneous measurement of DNA, protein and cell volume in single cells from large mammalian cell populations,” J.Cell Biol, Vol 59,1973, pp.766.
[7] J. Kruger, K. singh, A. O’Neill, C. Jackson, A. Morrison, and P.O. Brien, “Development of a microfluidic device of fluorescence activated cell sotring,” J.Mocromech. Microeng Vol.12, 2002, pp.486-494.

被引用紀錄


邱振峯(2007)。介電泳力應用在連續型加熱流道進行單壁奈米碳管分離之研究〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-2908200708152500
陳勇州(2011)。介電泳力分離奈米粒子整合石英晶體微天平分析設計〔碩士論文,大同大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0081-3001201315111725

延伸閱讀