透過您的圖書館登入
IP:3.145.204.201
  • 學位論文

摻雜對SrCoO3陰極材料特性影響

The effect of dopant on SrCoO3 cathode materials

指導教授 : 王錫福

摘要


本研究利用Pechini法製備SrCo1-xSbxO3-δ(x=0.02、0.05、0.10、0.15)系列粉體,利用固態合成法製備SrCo1-xSnxO3-δ(x=0.05、0.10、0.15、0.20)系列粉體與PrxSr1-xCo0.95Sn0.05O3-δ(x=0.1、0.20、0.30)系列粉體,此三系列皆為鈣鈦礦結構且具有混合導體。本研究利用B位摻雜Sb與Sn不同比例,A位摻雜Pr不同比例,來探討其相結構穩定性與物理特性和化學穩定性。 SrCo1-xSbxO3-δ(x=0.02、0.05、0.10、0.15)系列,當Sb摻雜含量為2%與5%時,其結構為正方晶,摻雜10%與15%則轉變成立方晶結構。SrCo1-xSnxO3-δ(x=0.05、0.10、0.15、0.20)系列,摻雜Sn皆可讓結構穩定成立方晶,但超過10%則無法再固溶進去產生二次相。PrxSr1-xCo0.95Sn0.05O3-δ(x=0.1、0.20、0.30)系列,摻雜Pr也可使結構穩定成立方相,但摻雜含量至30%以無法固溶進去產生二次相。 導電率方面,SrCo0.98Sb0.02O3-δ在450℃有最高導電率約510S•cm-1。SrCo1-xSnxO3-δ部份,SrCo0.95Sn0I.05O3-δ在550℃有最高導電率在550 S•cm-1。PrxSr1-xCo0.95Sn0.05O3-δ部份,在Pr0.2Sr0.8Co0.95Sn0.05O3-δ在200℃有最高導電率在1225 S•cm-1。整體來講,此三系統皆可用於中溫型固態氧化物燃料之陰極材料。 本研究之陰極材料皆與LSGM電解質有良好的化學穩定性,經1100oC持溫兩小時熱處理皆無二次相產生。SrCo1-xSbxO3-δ系列與SDC電解質在熱處理1100oC持溫兩小時無二次相產生。SrCo1-xSnxO3-δ與PrxSr1-xCo0.95Sn0.05O3-δ在熱處理1000oC持溫兩小時無二次相產生。

並列摘要


The synthesis of the SrCo1-xSbxO3-δ(x =0.02、0.05、0.10、0.15) Series powder was performed via Pechini method. SrCo1-xSnxO3-δ(x=0.05、0.10、0.15、0.20) and PrxSr1-xCo0.95Sn0.05O3-δ(x=0.1、0.20、0.30) were synthesized by a solid state reaction. The three series are all perovskite structure and display mixed ionic and electronic conducting. In this study, B site doped Sb and Sn in different ratio, A site different from the ratio of Pr doping, to investigate the structural stability and physical properties and chemical stability. SrCo1-xSbxO3-δ(x=0.02、0.05、0.10、0.15) system,X-ray diffraction results show the stabilization of a tetragonal structure with Sb contents between x = 0.05 and x = 0.10.At x = 0.15 and x = 0.20 a phase transition take place and the material is defined in the cubic structure. SrCo1-xSbxO3-δ(x=0.02、0.05、0.10、0.15) system,doping Sn can be stabilization of a cubic structure ,but more than 10% are unable to solid solution result in produce the second phase . PrxSr1-xCo0.95Sn0.05O3-δ(x=0.1、0.20、0.30) system,doping Pr can be stabilization of a cubic structure ,but more than 30% are unable to solid solution result in produce the second phase . The sample with SrCo0.98Sb0.02O3-δ displays the highest conductivity value that reaches 510 S cm− 1 at 450 oC .The SrCo1-xSbxO3-δ system , SrCo0.95Sn0.05O3-δ exhibits the highest conductivity of 550 S•cm-1 at 550 oC. The SrCo1-xSbxO3-δ system , PrxSr1-xCo0.95Sn0.05O3-δ exhibits the highest conductivity of 1225 S•cm-1 at 200 oC. In the study , all sample display chemical compatibility with electrolyte LSGM under the 1100oC thermal treatment . SrCo1-xSnxO3-δ and PrxSr1-xCo0.95Sn0.05O3-δ sample display chemical compatibility with electrolyte SDC20 under the 1000oC thermal treatment . The results indicate that three system all are potential cathode materials for application in IT-SOFCs.

並列關鍵字

SOFC MICC Pechini

參考文獻


[1]. N. Q. Minh, “Ceramic fuel cells,” Journal of the American Ceramic Society, vol.76 (1993) pp.563-588.
[2]. B. Lin, “Prontonic ceramic membrane fuel cells with layered GdBaCo2O5+x cathode prepared by gel-casting and suspension spray,” Journal of Power Sources, vol.177 (2008) pp.330-333.
[4]. Y. Leng, “Development of LSCF–GDC composite cathodes for low-temperature solid oxide fuel cells with thin film GDC electrolyte,” International Journal of Hydrogen Energy, vol. 33 (2008) pp.3808–3817.
[5]. Q. Ma, “A high-performance ammonia-fueled solid oxide fuel cell,” Journal of Power Sources, vol. 161 (2006) pp.95–98.
[6]. T. Hibino, “A solid oxide fuel cell using Y-doped BaCeO3 with Pd-loaded FeO anode and Ba0.5Pr0.5CoO3 cathode at low temperatures,” Journal of the Electrochemical Society, vol. 149 (2002) pp.A1503-A1508.

延伸閱讀