透過您的圖書館登入
IP:18.117.216.229
  • 學位論文

氧化鋅奈米結構成長之研究

The study of growth of ZnO nanostructures

指導教授 : 王耀德
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本實驗目的為研究氧化鋅緩衝層對成長氧化鋅奈米結構的影響。實驗中首先以VS機制在Sapphire基板上成長奈米結構,並利用XRD與SEM量測來研究結構特性。在無緩衝層的情形下,提高載流流量會讓生成的奈米線會減少,製程時間拉長,能讓奈米線數量增加,但也會讓線徑加大。而在較高溫度下成長出的奈米線結構會變得較寬,形成較多的奈米帶結構。實驗中的氧化鋅緩衝層是使用RF磁控濺鍍系統來製備,由實驗量測得知,緩衝層並不是決定生成奈米線多寡的因素,且與無緩衝層一樣,在高溫爐製程時溫度越高線徑也會越寬。本實驗發現,加上緩衝層後能令所成長的奈米線線徑趨於一致。

關鍵字

奈米結構 濺鍍法 緩衝層

並列摘要


In this research we wanted to study the influence of the ZnO buffer layer on growing ZnO nanostructures. In the experiment, first, growing nanostructures on the sapphire substrates by VS growth mechanism, then using XRD and SEM to measure or analyse the property of structures. When there does not have the buffer layer, the quantity of nanowires would decrease, if carrier gas flow rate increased. If the growing time increased, the quantity of nanowires would increase﹐the wire radius would increase, too. In the higher temperature, the structure of nanowires will become more wider, and form many nanoblets. In this experiment, the ZnO buffer layer is preparing by RF magnetron sputter. The research showed that the amount of nanowires will not depended no the buffer layer. And no matter it has the buffer layer or not, the width of nanowire in high temperature is thicker than in low temperature. This experiment discovered, that the buffer layer will make the radius of nanowire trending identically.

並列關鍵字

nanostructure sputter buffer layer

參考文獻


[2] H. Raether, "Surface Plasmons on Smooth and Rough Surfaces and on Gratings, " Springer Tracts in Modern Physics, vol. 111, 1988
[3] Y. Chen, D. M. Bagnall, H. J. Koh, K. T. Park, K. Hiraga, Z. Zhu and T. Yao﹐"Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization," Journal of Applied Physics, vol. 84, 1998, pp. 3912.
[5] J. Koike, H. Tanaka, H. Ieki, "Quasi-Microwave Band Longitudinally Coupled Surface Acoustic Wave Resonator Filters Using ZnO/Sapphire Substrate," Japanese Journal Applied Physics, vol. 34, 1995, pp. 2678.
[6] S. J. Pearton, D. P. Norton, K. IP, Y. W. Heo, T. Steiner, "Recent progress in processing and properties of ZnO," Superlattices and Microstructure, vol. 34, 2003, pp. 32.
[7] M. Joseph, H. Tabata, T. Kawai, "p-Type Electrical Conduction in ZnO Thin Films by Ga and N Codoping," Japanese Journal Applied Physics, vol. 38,1999, pp. 2505.

延伸閱讀