本研究參考“捷運局特別技術規範2.1.12空調系統與通風”,研究車廂內部線型出風口送風速度及送風角度與冷房效果及乘客舒適度之影響。對模擬空間產生的熱負荷計算空調負荷;再以計算流體力學(CFD)氣流模擬軟體AirPak 2.1 進行數值的模擬計算。氣流模擬探討兩種電聯車車廂空調送風條件:包括有1.空車狀態,2.每車乘客人數20員座位,改變車廂內部線型出風口送風速度及送風角度予以個別分析室內空調氣流對乘客舒適度之影響。 研究結果顯示,Case B2 送風速度0.4m/s及送風角度為水平向下15°時,距離車廂地板表面0m~1.1m的高度,車廂內部平均溫度約為24.3℃且PMV值為0.06160;ISO 7730熱舒適度屬於舒適。車廂內部平均溫度值位於ASHRAE 55, 2004所述「可接受之舒適區域溫、濕度曲線圖」數值(夏天24℃~26℃),為模擬案例中最經濟又能符合節能減碳的要求。 本文之研究成果,可提供設計電聯車車廂內部出風口送風速度及送風角度之用,有效達成電聯車車廂內部空調氣流分佈及溫度的最佳化,在電聯車車廂內部空調配置的初期設計規劃階段,提供乘客舒適度設計之參考。
Refering to the "DORTS particular technical specification (PTS) 2.1.12: the air-conditioning and ventilation," this paper aimed to study the optimum velocity and angle of the air blowing of the line-type air diffuser within vehicle and passenger's thermal comfort. First, the air-conditioning heat load in the simulation space was calculated, and then the computational fluid dynamic (CFD) software AirPak 2.1 was used for the indoor thermal environment simulations. This CFD simulation investigated two scenarios of MRT vehicle air-conditioning: a. Empty state and b. twenty passenger seats in each vehicle. The passenger's thermal comfort was evaluated for the different types of the line-type air diffuser blow velocity and angle. This result of study shows that Case B2, blowing velocity is 0.4m/s and the blowing angle is 15 degrees downwards of level, is the optimum design case. The meantemperature of the Case B2 is 24.3℃ and the mean PMV value is about 0.06160 between 0m to 1.1m height away from the vehicle floor surface, which meets the acceptable thermal comfortable criteria of ASHRAE Std. 55, 2004 and ISO 7730 Std and meets the concept of energy saving and carbon reduction. The research results in this study can be applied as a reference for optimizing the velocity and angle of airflow of vehicle diffuser in order to reach optimum and uniform airflow distribution of the air-conditioning system in the future at the initial design stage of planning.