透過您的圖書館登入
IP:13.58.117.102
  • 學位論文

應用粒子群最佳化演算法與免疫演算法為基之動態分群於顧客關係管理研究

Integration of Particle Swarm Optimization and Immune Algorithm-based Dynamic Clustering for Customer Relationship Management

指導教授 : 田方治 郭人介

摘要


隨著科技日新月異,新的群集分析方法不斷地被提出,但大多分群方法需先設定分群之群數,因此本研究主要提出一自動分群之方法-Dynamic Clustering using Particle Swarm Optimization and Immune Algorithm (DCPIG)演算法,不需事先決定欲分群的數目,可藉由資料的特性自行群聚成適合的群集。 本研究分別採用四組基準資料集Iris、Wine、Glass以及Vowel來進行DCPIG的實驗,並與Dynamic Clustering using Particle Swarm Optimization (DCPSO) 、Dynamic Clustering using Genetic Algorithm (DCGA) 和Dynamic Clustering using Particle Swarm Optimization and Genetic Algorithm (DCPG)進行比較,以驗證該方法之準確性及有效性。驗證得知,本研究所提DCPIG此一動態分群的方法在分群結果上表現較為穩定且優異。最後再將此方法應用於某網路商店之顧客資料庫中,利用DCPIG自動分群法找出最佳的分群結果後,透過分群結果進行分析,提供給網路商店在顧客關係管理上,能確實針對不同客群,給予需要商品及服務。

並列摘要


With the advancement of technology, different methods for clustering analysis are continually proposed. Even though, most of the clustering methods still need to set the number of cluters. Thus, this study intends to propose a novel dynamic clustering technique, Dynamic Clustering using Particle Swarm Optimization and Immune Algorithm (DCPIG), which does not need to set the number of cluters in advance. By examining the data features, the proposed method is able to auomatically cluster the data into some suitable clusters. This study employees four benchmark datasets, Iris, Wine, Glass and Vowel, to evaluate the accuracy of DCPIG by comparing with other three methods, Dynamic Clustering using Particle Swarm Optimization and Genetic Algorithm (DCPG), Dynamic Clustering using Particle Swarm Optimization (DCPSO) and Dynamic Clustering using Genetic Algorithm (DCGA). The experimental results indicate that DCPIG outperforms other three methods in accuracy and stability. Additionally, a customer transaction database of an online store selling flowers is also used for further evaluation. The DCPIG results are still very promising and can be used to provide valuable suggestions for customer relationship management including giving different services and products for different clusters.

參考文獻


[3] 林如梅,整合遺傳演算法和粒子群最佳化演算法於分群分析之研究,台北科技大學工業工程與管理研究所,碩士論文,台北,2008。
[1] 徐儀蓁,整合粒子群最佳化與遺傳演算法演算法於動態分群分析之研究,台北科技大學工業工程與管理研究所,碩士論文,台北,2009。
[2] 林芳君,應用粒子群最佳化於群集分析以縮短SMT換線時間-以研華科技為例,台北科技大學工業工程與管理研究所,碩士論文,台北,2007。
[4] 黃庭瑋,應用群集分析方法縮短SMT換線時間-以研華科技為例,台北科技大學工業工程與管理研究所,碩士論文,台北,2006。
[22] Arumugam, M.S. and Rao, M.V.C., “On the improved performances of the partical swarm optimization algorithms with adaptive parameters, cross-over operators and root mean square(RMS) vataiants for computing optimal control of a class of hybrid systems,” Applied Soft Computing, vol. 8, no. 1, 2008, pp. 324-336.

被引用紀錄


許正良(2013)。應用人工智慧法於居家照顧服務排程路徑規劃問題〔碩士論文,國立虎尾科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0028-2307201312195900
黃建銘(2014)。演化式演算法於開放型固定間隔參觀時間之遊客導覽排程問題〔碩士論文,國立虎尾科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0028-3007201423102500

延伸閱讀