透過您的圖書館登入
IP:18.221.187.121
  • 學位論文

高階線性轉換全差動運算轉導放大器之低通濾波器設計

High-Order Linear Transformation Fully Differential OTA-C Low Pass Filter Design

指導教授 : 黃育賢

摘要


本論文主要研究的重點是實現新的全差動電壓及電流模式高頻三階運算轉導放大器之低通濾波器架構。 使用運算轉導放大器實現電壓及電流模式的三階低通濾波器,濾波器用線性轉換原理合成並改為全差動模式,保有被動元件低靈敏度特性又能抵消雜訊干擾,經由這種有效率的查表方式可得到最少主動元件完成的濾波器。運算轉導放大器使用互補式差動對,達到低失真和高頻率特性,利用內建的共模回授改善其穩定性,使用台積電0.18um製程,除了有低電壓及低功率的優點,又能用最小面積及最簡電路實現更高的頻寬,將有模擬結果來證明與設計規格相符。 最後,電壓模式三階低通巴特沃斯濾波器頻寬為200MHz、輸入擺幅為0.5V時,200MHz的總諧波失真為-43dB、功率消耗為9.7693mW及面積為0.186mm*0.188mm,電流模式三階低通巴特沃斯濾波器頻寬為200MHz、輸入擺幅為0.4mA時,200MHz的總諧波失真為-46.5dB、功率消耗為16.773mW及面積為0.163mm*0.186mm。

並列摘要


The major research of this thesis is to implement new fully differential voltage and current mode high-frequency third-order operational transconductance amplifier-capacitor low-pass filters. These proposed filters use linear transformation to synthesize and change to fully differential architectures. The low sensitivity characteristics of passive filters are also hold and cancel out interference of noise. These efficient design tables can get less component of active filters. Operational transconductance amplifiers use complementary differential pairs to achieve low distortion and high frequency. Exploit on operational transconductance amplifier common mode feedback to improve stability. Using TSMC 0.18 m process, not only have advantages of low voltage and low power, but also less area and simple circuits to obtain high frequency range. Our simulation results meet with specifications. Finally, the voltage-mode third-order Butterworth low-pass filter with 200MHz bandwidth, total harmonic distortion was -43dB at 0.5V peak to peak for 200MHz input signal, power dissipation was 9.7693mW, and core area was 0.186mm*0.188mm. The current-mode third-order Butterworth low-pass filter with 200MHz bandwidth, total harmonic distortion was -46.5dB at 0.4mA peak to peak for 200MHz input signal, power dissipation was 16.773mW, and core area was 0.163mm*0.186mm.

參考文獻


[1]. I. Mehr and D. R. Welland, “A CMOS continuous-time Gm-C filter for PRML read channel applications at 150 Mb/s and beyond,” IEEE J. Solid-State Circuits, vol. 32, pp. 499-531, Apr. 1997.
[2]. P. Pandey, J. Sliva-Martinez, and X. Liu, “A 500MHz OTA-C 4th order Lowpass Filter with Class AB CMFB in 0.35 m CMOS Technology,” IEEE Custom Integrated Circuits Conference, pp.57-60, Oct. 2004.
[3]. B. Nauta, “A CMOS transconductance-C filter technique for very high frequencies,” IEEE J. Solid-State Circuits, vol. 27, pp. 142-153, Feb. 1992.
[4]. R. Schaumann, “Simulating lossless ladders with transconductance-C Circuits,” IEEE Trans. Circuits Syst.II: Analog and Digital Signal Processing, vol. 45, no. 3, pp. 407-410, Mar. 1998.
[5]. H. Voorman and H. Veenstra, “Tunable high-frequency Gm-C filters,” IEEE J. Solid-State Circuits, vol. 35, pp. 1097-1108, Aug. 2000.

被引用紀錄


楊思哲(2008)。以電流式主動元件為基礎設計電壓模式可調主動濾波器〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2008.00618
陳耿堂(2008)。使用運算轉導放大器設計混合模式主動濾波器〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-1508200811080000
邱創郁(2010)。使用交換式電容技術設計自動調整頻率濾波器〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-1308201017000700

延伸閱讀