透過您的圖書館登入
IP:3.145.47.253
  • 學位論文

染料敏化太陽能電池劣質化分析研究

An in-situ study of dye degradation mechanism in dye-sensitized solar cell

指導教授 : 楊重光
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文主要以原位傅立葉散射–反射紅外光譜儀、多功能多角度光譜儀與拉曼散射光譜儀等儀器,觀察染料分子於TiO2膜表面之吸附機制、太陽電池元件之光電轉換效率及電池內部衰退情形。 研究中,以原位傅立葉散射–反射紅外光譜儀發現染料N3為透過兩個COOH配位基及染料N719為透過一個COOH配位基,以bidentate或者bridging形式吸附鍵結於TiO2薄膜,而染料black dye則為以一個COO-配位基以bidentate或者bridging形式吸附鍵結於TiO2薄膜。以相同染料N719在不同工作面積(1、0.49及0.25cm2)下,0.25cm2電池效率表現較1cm2,提昇51%。 透過原位傅立葉散射–反射紅外光譜儀及多功能多角度光譜儀對已吸附不同組成條件之混合染料的TiO2薄膜進行檢測,可證實於TiO2薄膜表面上確實吸附不同種之染料分子,且符合實驗設定之混合比例。 利用拉曼散射光譜儀搭配共焦(Confocal)顯微系統架構,透過其 XYZ 掃描平台,獲得2D/3D 共焦拉曼圖譜,藉由拉曼光譜可判定染料官能基是否還連接於染料分子上及其他導致劣質化的因素。

並列摘要


In the present work, the interactions between N3, N719,and black dye sensitizers with nanocrystalline TiO2 film was investigared by DRIFTs-FTIR spectroscopy. Experimental results show that N3 and N719 dyes were anchored onto the TiO2 surface by bidentate or bridging mode using two carboxylic acid groups and one carboxylic acid group, respectively. Instead, black dye uses one carboxylate group through bidentate or bridging mode. Different active areas of working electrode (1, 0.49, 0.25cm2) were immersed into the dye solution and the efficiency of solar cell is 6.21% with the active area of 0.25 cm2. In dye co-sensitization experiment, TiO2 electrodes were mixed with N3, N719, and black dye in various proportions, results demonstrated that multiple adsorption of dyes on TiO2 surface in different extent. In-situ Raman scanning technique were implemented under real photocurrent conditions. Valuable information on the dye intramolecular interactions in the excited state as well as the interactions between dye-semiconductor electrodes were obtained. This information were interpreted to correlate the degradation mechanisms between their operation of conditions and their corresponded material properties.

參考文獻


Park, G. Schlichthörl, Presented at the 2nd world Conference and Exhibition
2. Neil Robertson , Angew. Chem. Int. Ed., 45, 2338 (2006)
4. Grünwald R., Tributsch H., J. Phys. Chem.B,101, 2564 (1997)
N. Vlachopoulos, M. Grätzel, J. Am. Chem. Soc., 115, 6382 (1993)
, 125, 475 (2003)

被引用紀錄


林若純(2013)。靜電紡絲在電池材料的應用研究 (1)銦錫氧化物(ITO)導電纖維之製備 (2)TiO2及其前驅物混層薄膜的製備〔博士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2013.00558
蕭新翰(2013)。Ag@TiO2核殼型奈米複合材料應用於染料敏化太陽能電池之研究〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2013.00339
周政逸(2012)。陽極處理法製備染料敏化太陽能電池中光電極薄膜之研究〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2012.00348
施樂晏(2012)。染料敏化太陽能電池之膠態電解質開發〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2012.00267
洪睿襄(2009)。以無電鍍法製備二氧化鈦-銀複合電極在染料敏化太陽能電池上之應用〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2009.00442

延伸閱讀