透過您的圖書館登入
IP:18.116.28.246
  • 學位論文

減壓機構之後座運動及震波特性

Dynamic Characteristics of Recoil Motion and Shock Wave Caused by Reducing Force Mechanism

指導教授 : 張 合 鍾清枝
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究旨在探討管口減壓機構所引起的後座運動及拋射體震波之動態特性,擷取射擊參數用以評估中等口徑發射管射擊反坦克高爆拋射體及尾翼穩定脫殼穿甲拋射體及大口徑發射管射擊高爆拋射體所產生的後座運動、管口及拋射體震波,同時也呈現實驗結果。於射擊中所量測的數種相關的動態特性並列於一示圖中用以理解不同物理行為間之異同。 反坦克高爆拋射體及尾翼穩定脫殼穿甲拋射體管口初速分別為3.4及4,4馬赫,並分別於有無裝置多孔式管口減壓機構之發射管中射擊。而射擊高爆拋射體的大口徑發射管則裝置雙擋板式管口減壓機構。於制退系統,管口減壓機構減緩制退速度及延長抵抗發射藥氣體作用時間,從而降低制退機之內壓並減少高達50%作用於砲耳之後座力。 於近場,探討先導波、超壓及負壓等管口動態特性形成於管口減壓機構不同之部位之成因。於中場,一整合照相機之環形具有32個麥克風陣列擷取之拋射體N形波及馬赫錐之聲音影像。本研究在軍備工程領域為開創性的技術貢獻,至今尚無先例,目前亦無此方法之相關發表,本研究足可作為發展火砲、坦克及戰鬥車之重要參考。

並列摘要


HEAT and APFSDS projectiles are fired at muzzle velocities of Mach 3.4 and 4.4 respectively, from the cannon either equipped with a multi-perforated muzzle brake (MPMB) or with bare muzzle. HE projectile is fired at the muzzle velocity of Mach 2 by the howitzer installed a double baffled muzzle brake. In the recoil system, the muzzle brake moderates the recoil velocity and prolongs the time of resistance to the propellant gases force, thereby reducing the inner pressure of the recoil cylinder and attenuating the recoil force on trunnions. In the near field, dynamic muzzle features such as the precursor wave, overpressures and negative pressures are formed at different portions of the muzzle brake. In the middle field, the projectile N-wave and acoustic images of Mach cone are acquired by a 32-microphone ring array. Acoustic images of supersonic projectile shock wave caught by microphone array integrated a camera is an original contribution to field of armament engineering. No precedent is known, and no experimental results of such a method have been published until now. All measurements in this study can be a significant reference for developing guns, tanks or the chassis of fighting vehicles.

參考文獻


[19] E. M. Schmidt and D. D. Shear, “Optical Measurements of Muzzle Blast,” Journal of AIAA, 1975, vol. 13, no. 7, pp. 1058-1065.
[20] G. Klingenberg and H. Mach, “Investigation of Combustion Phenomena Associated with the Flow of Hot Propellant Gases - I: Spectroscopic Temperature Measurements Inside the Muzzle Flash of a Rifle,” Combustion and Flame, 1976, vol. 27, pp. 163-176.
[21] G. Klingenberg and G.A. Schroder, “Investigation of Combustion Phenomena Associated with the Flow of Hot Propellant Gases - II: Gas Velocity Measurements by Laser-Induced Gas Breakdown,” Combustion and Flame, 1976, vol. 27, pp. 177-187.
[22] G. Klingenberg, “Investigation of Combustion Phenomena Associated with the Flow of Hot Propellant Gases - III: Experimental Survey of the Formation and Decay of Muzzle Flow Fields and Pressure Measurements,” Combustion and Flame , 1977, vol. 29, pp. 289-309.
[23] H. Kashimura, T. Yasunobu, H. Nakayama, T. Setoguchi, and K. Matsuo, “Discharge of a Shock Wave from an Open End of a Tube,” Journal of Thermal Science, 2000, vol. 9, no. 1, pp. 30-36.

延伸閱讀