透過您的圖書館登入
IP:3.137.164.241
  • 學位論文

無機聚合技術應用於綠色水泥及綠色混凝土之研究

A Study on Green Cement and Green Concrete Using Geopolymeric Technology

指導教授 : 鄭大偉
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


無機聚合物是一種三維架狀結構鋁矽酸鹽材料,主要是以富含矽、鋁之材料,與鹼性溶液攪拌製成,其擁有高強度、良好的耐久性及耐酸鹼腐蝕性等多方面優異之性質,為似水泥材料。無機聚合物無需經高溫燒結處理,於低溫下即可製成,然而在水泥製造過程中,熱處理會產生大量之二氧化碳,一般來說製造每1公噸水泥,約會產生0.88公噸之二氧化碳,台灣每年因生產水泥,導致產生之二氧化碳高達1000萬公噸以上,因此若能以無機聚合技術為基礎,發展出低二氧化碳排放量的綠色水泥及綠色混凝土,則可有效解決國內水泥工業二氧化碳排放量之問題。 本研究主要分為三部份進行,第一部份係以水淬高爐石、燃煤飛灰作為粉體原料,並添加緩凝劑,與鹼性溶液混合製成無機聚合綠色水泥,探討不同之粉體重量百分比及添加緩凝劑之後對於機械強度、物性及微結構之影響;第二部份係採用無機聚合水泥較佳之參數,添加標準砂攪拌製成的,探討其乾縮及耐腐蝕特性;第三部份係以無機聚合水泥漿體添加細骨材及粗骨材攪拌製成無機聚合綠色混凝土,探討不同之液固比、粉體之重量百分比、粗細骨材之重量比及添加緩凝劑之後,對於強度、坍度、凝結時間及吸水率之影響。 研究結果顯示,無機聚合綠色水泥之抗壓強度最高可達到63 MPa;硬化時間最長為181分鐘終凝;微結構判定上,S3F7為三維鋁矽酸鹽架狀結構,而S7F3則為線性鍵結。而在無機聚合綠色混凝土方面,液固比為0.88時,其 28天強度可達範圍為261~408 kgf/cm2,坍度範圍為103~252㎜,硬化時間最長為56分鐘初凝,94分鐘終凝。將本研究製程與製造水泥所產生之二氧化碳排放量進行比較,每取代一公噸水泥,二氧化碳排放量最佳可節省0.25公噸。若以現今歐盟碳市場價格每公噸15歐元換算,經濟效益約為150元新台幣;若以自然界中之柳安樹每年約可吸收37公斤二氧化碳換算,相當種植7顆柳安樹的價值;每取代1m3傳統混凝土,二氧化碳排放量最佳可節省0.34公噸,經濟效益約為204元新台幣,相當種植9顆柳安樹的價值,其經濟價值效益高,且具有良好之環保性能。

並列摘要


Geopolymer is a a three-dimensional framework structure of aluminosilicate materials, mainly rich in silicon, aluminum material mixing with the alkaline solution. Geopolymer have advantage of high strength, good durability and acid resistance, and it is like cementitious material. Geopolymer do not require high-temperature sintering, and can be made at low temperatures. However, in the cement manufacturing process, the heat treatment process will produce large amounts of carbon dioxide. In general, manufacturing every 1 tonne of cement, approximately produce 0.88 tonnes of carbon dioxide. In Taiwan, the carbon dioxide emission by cement industry is above 10 million tons annually. Therefore, using the geopolymeric technology to development low carbon dioxide emission green cement and green concrete can effectively solve the problem of carbon dioxide emissions in the cement industry. This study is divided into three parts, geopolymeric green cement was produced by mixing blast furnace slag, coal fly ash powder, retarding agent and alkali solution. Physical/mechanical properties and microstructure of green cement with varying amount of powder and after adding retarding agent were tested; geopolymeric green cement mortar was produced by mixing the better parameters of green cement and standard sand, and investigate its shrinkage and acid resistance; geopolymeric green concrete was synthesized by adding fine aggregate and coarse aggregate into green cement paste. The strength, slump, setting time and water absorption of green concrete with different amount of powder, liquid-solid ratio, aggregate weight ratio and after adding retarding agent were investigated. The experimental results of the geopolymeric green cement achieved the compressive strength of 63 MPa and 181 minutes setting time. The microstructure of geopolymeric green cement(S3F7) is three-dimensional aluminosilicate framework structure and green cement(S7F3) is linear bonding structure. As liquid-solid ratio is 0.88, 28 days strength of geopolymeric green concrete were between 261~408 kgf/cm2; slump was between 103 and 252 mm; the longest initial setting time was 56 minutes, and the longest final setting time was 94 minutes. It is estimated that for replacing one ton of OPC by geopolymeric green cement can save 0.25 ton carbon dioxide emission. It worth approximately 150 NT dollars, while conversion to EU carbon market price, or equally to plant 7 Lauan tree; for replacing a cubicmeters of conventional concrete by geopolymeric green concrete can save 0.34 ton carbon dioxide emission. It benefits approximately 204 NT dollars, or equally to plant 9 Lauan tree.

參考文獻


19. 柯翰勝,低二氧化碳排放的無機聚合綠色水泥開發研究,碩士論文,國立台北科技大學資源工程研究所碩士班,台北,2011。
50. 王信文,無機聚合物技術應用於油氣鑽井廢棄物低溫燒製建築用磚之研究,碩士論文,國立台北科技大學資源工程研究所碩士班,台北,2011。
1. R. Cioffi, L. Mafucci, L. Santoro, “Optimization of geopolymer synthesis by calcination and polycondensation of a kaolinitic residue”, Resources, Conservation & Recycling, vol. 40, 2003, pp. 27-38.
14. H. Xu, J. S. J. Van Deventer, “The geopolymerisation of alumino-silicatminerals”, International Journal Minerals Process, vol. 59, 2000, pp.247-266.
15. M. Schmücker, K. J. D. Mackenzie, “Microstructure of sodium polysialatesiloxo geopolymer”, Ceramics International, vol.31, 2005, pp.433–437.

被引用紀錄


陳星諺(2014)。無機聚合材料滲透特性及影響因素研究〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2014.00698
呂軒志(2013)。無機聚合物工程特性及影響因素暨應用於混凝土缺陷修補研究〔博士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2013.00464
楊立昌(2014)。無機聚合綠色水泥收縮性質與工作性質改善之研究〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-1407201417013600
鍾清汶(2014)。無機聚合技術固化/穩定化焚化飛灰之研究〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-1607201413393800
鄧嘉倫(2016)。新拌混凝土碳儲存技術之初步研究〔碩士論文,朝陽科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0078-1108201714030562

延伸閱讀