透過您的圖書館登入
IP:3.138.141.202
  • 學位論文

CTAB/MnO2薄膜、poly MnTAPP-奈米金薄膜和MnO2-PEDOT薄膜修飾電極製備及電催化特性的研究

Electrochemical preparation, characterization of CTAB/MnO2, poly MnTAPP-nano Au and MnO2- PEDOT film modified electrodes for the electrochemical biosensor applications

指導教授 : 陳生明
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


第一部份是藉由電沉積方法將MnO2膜製備於Cetyl trimethylammonium bromide (CTAB)修飾電極上。此薄膜修飾電極稱為MnO2/CTAB/GCE。本研究利用原子力顯微鏡(AFM)、掃描式電子顯微鏡(SEM)、電化學阻抗分析儀(EIS)等證明MnO2電沉積於該電極表面。由循環伏安圖譜顯示出MnO2/CTAB修飾電極電化學活性和對溶於0.1 M磷酸緩衝溶液的對-乙醯胺基酚有良好電催化特性。本研究也以計時安培法來偵測對-乙醯胺基酚、並測得其感測線性範圍及偵測極限。除此之外,MnO2/CTAB修飾薄膜也具相當穩定性及對-乙醯胺基酚偵測之電化學感測器具有發展性的材料。 第二部份則是利用循環伏安法將聚錳紫質(poly MnTAPP)-奈米金(nano Au)薄膜成功的電沉積於玻璃碳電極以及ITO導電玻璃上。並利用SEM, AFM以及EIS等技術來對poly MnTAPP-nano Au修飾電極進行測定。此電沉積奈米金粒子在電極表面呈現出一個群聚的現象。在不同的緩衝溶液中,我們發現這個薄膜修飾電極具有其電化學活性及穩定性。poly MnTAPP-nano Au修飾電極亦被成功的使用計時安培法偵測次氯酸鈉(NaClO)。而其測定範圍在24 × 10-6至1.07 × 10-2 M。然而,排除干擾物質的訊號,此薄膜依然保持著其偵測NaClO的能力。除此之外,poly MnTAPP-nano Au修飾電極也已成功偵測市售漂白水中NaClO的訊號,其偵測濃度為24 × 10-6至8.2 × 10-3 M。 第三部份是使用循環伏安法將 MnO2-poly(3,4-ethylenedioxythiophene) 薄膜製備於玻璃碳電極上,並利用AFM,EIS及XRD來測定此薄膜的特性。此MnO2-PEDOT薄膜亦應用於偵測生物重要的化合物memantine hydrochloride以及過氧化氫。在此使用循環伏安法以及定電位法偵測在pH = 7.0 磷酸緩衝溶液中,memantine hydrochloride 與過氧化氫的電催化氧化。此外,MnO2-poly (3,4-ethylenedioxythiophene) 薄膜在不同的pH緩衝溶液中亦具有相當高的穩定性以及電化學活性,並適作為memantine hydrochloride和過氧化氫的感測器之用。

並列摘要


Part I:Electrochemically manganese dioxide (MnO2) film was deposited onto cetyl trimethylammonium bromide (CTAB) modified glassy carbon electrode (GCE). This new modified electrode denoted as MnO2/CTAB/GCE. Atomic force microscope (AFM), scanning electron microscope (SEM) and electrochemical impedance studies were proved that MnO2 was deposited on the electrode surface. Cyclic voltammetry revealed that MnO2/CTAB modified electrode electrochemically active and showed excellent electrocatalytic properties towards acetaminophen in 0.1 M phosphate buffer solution. Using amperometry, linear range and detection limit were estimated for acetaminophen. In addition, MnO2/CTAB modified electrode was highly stable and promising materials in the development of electrochemical sensor for the detection of acetaminophen. Part II:Poly MnTAPP-Nano Au film successfully electrodeposited on GCE and ITO using cyclic voltammetry. Further the electrochemically deposited poly MnTAPP-nano Au modified electrodes have been characterized using SEM, AFM and EIS techniques. Here the electrodeposited nano Au particles exhibited as a group on the electrode surface. The proposed film modified GCE found to be electrochemically active and stable in various buffer solutions. The poly MnTAPP-nano Au modified GCE successfully employed for the amperometric detection of sodium hypochlorite (NaClO). The proposed film exhibits the amperometric detection of NaClO in the linear range of 24 x 10-6 to 1.07 x 10-2 M. Also, the proposed film also holds the capacity to eliminate the interference substances signal and shows the detection signals of NaClO. In addition, the poly MnTAPP-Nano Au film modified GCE successfully detects the NaClO signals in the commercially available bleaching liquids. Part III:Electrochemical fabrication of MnO2-poly (3,4-ethylenedioxythiophene) (PEDOT) film has been successfully fabricated on GCE using cyclic voltammetry. This type of metal oxide-polymer composite film further successfully characterized using AFM, EIS and XRD. The proposed MnO2-PEDOT film modified GCE successfully employed for the detection of biologically important compounds like memantine hydrochloride (MEM) and H2O2. Cyclic voltammetry (CV) and chronoamperometry has been employed for the oxidation of both MEM and H2O2 in pH 7.0 phosphate buffer solution (PBS). The MnO2-PEDOT film modified GCE detects the MEM and H2O2 in the linear range of 1 × 10-5 to 1 × 10-4 M, 1 × 10-5 to 2 × 10-4 M, respectively. In addition the proposed film modified electrode was highly stable and electrochemically active in various pH solutions and could be employed as a sensor for the detection of memantine chloride and H2O2.

參考文獻


[1] P. Saber, W. Lund, Talanta, 29 (1982) 457.
[6] C. R. Martin; Rhoades, T. A., Ferguson and J. A. Anal. Chem., 54 (1982) 1639.
[7] C. S. Cha, J. Chen, P. F. Liu, Electroanal. Chem., 345(1993) 463.
[8] M. Li, L. Jing, Electrochimica Acta, 52 (2007) 3250-3257.
[9] S. F. Fabiana, M. A. Christopher, L. Angnes, Journal of Pharmaceutical and Biomedical Analysis, 43 (2007) 1622-1627.

延伸閱讀