透過您的圖書館登入
IP:18.226.169.94
  • 學位論文

激態奈米多孔性氧化層對鈦金屬植體的骨癒合及抗菌性之影響研究

Research of osseointegration and anti-bacterial capability on implant with excited nanoporous titanium oxide layer

指導教授 : 歐耿良
共同指導教授 : 王正怡(Cheng-Yi Wang)
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


鈦金屬對人體的生物相容性(biocompatibility)有很高的評價,很適合最為人體的植入物,這個特性與鈦金屬表面上的氧化層薄膜有關,而此種鈦金屬與骨頭的關係我們稱之為骨整合(osseointegration)。於一些研究及文獻亦顯示植入生物體內材料表面的孔徑大小、粗糙度和細胞初始的攀附行為、增殖及分化有密切的關係。因此,本實驗將以陰極處理方式進行,在所給予不同條件的材料製備完成並在無塵室加以清洗、消毒、分析後,即以這些鈦金屬試片進行細胞培養,經特定的時間分別對細胞的攀附,增殖作不同的測試,並加以比較不同條件下探討對細胞增生及分化的影響。 本實驗以電化學的方式於氫氟酸酸液中進行陰極處理,使得於鈦金屬表層形成一層奈米析出物,於陰極處理後接著馬上進行陽極處理,使得奈米析出物溶出致使奈米孔洞生成。待表面生成一層網狀奈米多孔性的二氧化鈦(TiO2)結構,並以一些物理及化學性的分析儀器測試表面之成分、元素、膜厚、孔洞大小及結構,進一步進行細胞實驗並探討網狀奈米多孔性的二氧化鈦的形成機制。 1.經陰極處理後,於植體表面會產生奈米結構氫化物,其結構為奈米-(γ-TiH+δ-TiH0.71)所組成。 2.奈米-(γ-TiH+δ-TiH0.71)為一種犧牲型的奈米析出物。 3.於陰極處理過程中,會產生相變化由α-Ti結構→γ- TiH→δ-TiH0.71結構。 4.於鹼性溶液中(alkaline solution)進行陽極處理,表面形成一層奈米二氧化鈦(TiO2)的多孔性結構。 5.奈米二氧化鈦(TiO2)的多孔性結構使得表面能提升,致使骨細胞快速增生及分化。 奈米的氫化物為奈米犧牲型的奈米析出物,其對形成的奈米孔洞的機制有重要因子。此外,奈米孔洞具對骨細胞快速增生的能力,故藉由此研究能減少人體的植入物與骨頭的之間的癒合時間,達到快速骨整合的能力。

關鍵字

二氧化鈦 抗菌 生物相容性

並列摘要


Titanium-based alloys with excellent biocompatibility have been investigated by many researches. It is due to its passive oxide film. The surface characteristics of titanium implant, such as pore sizes/roughness, oxide thickness are related to initial cell behaviors and osseointegration. It seems to be helpful to osseointegration if implant can effectively keep surface oxidation, nanoporosity and oxide thickness. Furthermore, the other important issue is that the implants possess the better the anti-bacterial capability. The anti-bacterial capability can effectively the decrease affection and inflammation. Hence, the healing time will be improved obviously. Based on the present study, in order to get the thick oxidation and the minimum pore size, the nano-titanium hydride is the main factor in forming thick nanoporous titanium oxide structure. The present electrochemiscal process was performed as surface treatment of titanium-based implant. Titanium hydride (γ-TiH+δ-TiH0.71) was formed on titanium implant surface after hydrofluoric acid-cathodic treatment. Nanoporous titanium oxide was formed by anodization. As the mention above, physical properties, chemical properties as well as biocompatibility and anti-bacterial capability of titanium implants with and without electrochemical treatments were analyzed clearly. Furthermore, mechanism of bone healing on implant with nanoporosity and anti-bacterial capability were also discussed clearly.

參考文獻


1. Friberg B., G.K., Lekholm U.and Branemark PI., Long-term follow-up of severely atrophic edentulous mandibles reconstructed with short Branemark implants. Clin Implant Dent Relat Res, 2000. 2: p. 184.
3. Kim HM, K.T., Fujibayashi S, Nishiguchi S and Nakamura T., Bioactive macroporous titanium surface layer on titanium substrate. J Biomed Mater Res, 2000. 52: p. 553.
4. Brånemark PI., B.U., Adell R. and Hansson BO., Intraosseous anchorage of dental prostheses. Scand J Plast Reconstr Surg, 1969. 3: p. 81.
8. Schroeder A., V.d.Z.E., Stich H. and Sutter F., The reaction of bone, connective tissue and epithelium to endosteal implants with sprayed titanium surface. J. Maxillofac Surg, 1981. 9: p. 15.
9. Buser D. and W.H.a.L.N., Tissue integration of non-submerged implants 1-year results of a progressive study with 100 ITI hollow-screw and hollow-cylinder implants. Clin Oral Impl Res, 1990. 1: p. 33.

延伸閱讀