透過您的圖書館登入
IP:3.141.164.0
  • 學位論文

海洋深層水應用於骨鬆預防之骨再生研究

The potential effect of deep sea water on bone regeneration in osteoporosis

指導教授 : 鄧文炳

摘要


本研究目的是利用海洋深層水(Deep seawater, DSW)應用於骨質疏鬆症之研究,探討其在骨質疏鬆之預防與改善。首先,利用MTT試驗評估不同硬度之海洋深層水對骨母細胞其毒性測試,結果證實硬度1000 ppm之海洋深層未對骨細胞有毒殺作同時兼具有誘導細胞增生之能力;動物實驗將鑒於先前所建立骨鬆治療平台,利用去卵巢之早老化老鼠做為骨鬆模型,給予硬度1000 ppm之海洋深層水餵食,並於本研究的第0及4個月時進行動物疾病模式之功能性評估。結果證實於第四個月時,在骨密度、骨小樑數及骨切片上海洋深層水證實達到減緩骨質疏鬆之功能,且同時降低了血清ALP濃度,證實可有效減緩骨質流失之發生。於ex vivo實驗,除了海洋深層水組別骨髓細胞具較佳之細胞群落形成能力外,骨相關基因(BMP-2, RUNX2, OPN和OCN)也有高度的骨分化表現。鑑此,本研究證實海洋深層水具有效延緩骨鬆老鼠骨髓內骨流失現象,進而達到預防老鼠骨鬆之效果。因此本研究所發展之海洋深層水對骨新生作用及骨鬆之預防機制,預期能做為後續以骨鬆及骨折治療研究為基礎之臨床發展。

並列摘要


The aim of this study is to examine the therapeutic potential of deep sea water (LC-90K) on osteoporosis. Previously, we have established the ovariectomized senescence-accelerated mice (OVX-SAMP8) and demonstrated strong recovery of osteoporosis by stem cell and platelet-rich plasma (PRP). Deep sea water at hardness (HD) 1000 showed significant increase in proliferation of osteoblastic cell (MC3T3) by MTT assay. For in vivo animal study, bone mineral density (BMD) was strongly enhanced followed the significant followed the significantly increased trabecular numbers through Micro-CT examination after 4-month Deep sea water treatment. In biochemistry analysis, serum alkaline phosphatase (AP) activity was decreased. For stage-specific osteogenesis, bone marrow derived stromal cells (BMSCs) were harvest and examined. Deep sea water-treated BMSCs showed stronger osteogenic differentiation and enhanced colony forming abilities, compare to the control group. The results demonstrated the regenerative potentials of deep sea water on osteogenesis and showed that deep sea water could potentially be applied in osteoporosis therapy.

參考文獻


1 Adachi, J. D. et al. The association between osteoporotic fractures and health-related quality of life as measured by the Health Utilities Index in the Canadian Multicentre Osteoporosis Study (CaMos). Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA14, 895-904, doi:10.1007/s00198-003-1483-3 (2003).
2 Robbins, J. A., Biggs, M. L. & Cauley, J. Adjusted mortality after hip fracture: From the cardiovascular health study. Journal of the American Geriatrics Society54, 1885-1891, doi:10.1111/j.1532-5415.2006.00985.x (2006).
3 Braithwaite, R. S., Col, N. F. & Wong, J. B. Estimating hip fracture morbidity, mortality and costs. Journal of the American Geriatrics Society51, 364-370 (2003).
6 Johnston, C. C., Jr. & Slemenda, C. W. Changes in skeletal tissue during the aging process. Nutrition reviews50, 385-387 (1992).
7 Baczyk, G., Opala, T., Kleka, P. & Chuchracki, M. Multifactorial analysis of risk factors for reduced bone mineral density among postmenopausal women. Archives of medical science : AMS8, 332-341, doi:10.5114/aoms.2012.28562 (2012).

延伸閱讀